Impinging jets are widely used in the local enhancement of heat removed from internal passages of gas turbine blades. Arrays of stationary jets are usually impinged on surfaces of internal cooling passages. The current practice is to benefit from the high heat transfer coefficients existing in the vicinity of the jet impingement region on a target wall. The present study shows that a self-oscillating impinging-jet configuration is extremely beneficial in enhancing the heat removal performance of a conventional (stationary) impinging jet. In addition to a highly elevated stagnation line Nusselt number, the area coverage of the impingement zone is significantly enhanced because of the inherent sweeping motion of the oscillating coolant jet. When an oscillating jet (Re=14,000) is impinged on a plate normal to the jet axis (x/d=24 hole to plate distance), a typical enhancement of Nu number on the stagnation line is about 70 percent. The present paper explains detailed fluid dynamics structure of the self-oscillating jet by using a triple decomposition technique on a crossed hot wire signal. The current heat transfer enhancement levels achieved suggest that it may be possible to implement the present self-oscillating-impinging-jet concept in future gas turbine cooling systems, on rotating disks, glass tempering/quenching, electronic equipment cooling, aircraft de-icing, combustors and heat exchangers.

1.
Martin
,
H.
,
1977
, ‘‘
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Advances in Heat Transfer
,
T.
Irvine
and
J. P.
Hartnett
, eds.,
13
, Academic Press, New York, pp.
1
60
.
2.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
Int. J. Heat Mass Transf.
,
29
(
8
), pp.
1227
1235
.
3.
Gardon, R., and Cobonpue, J., 1962, “Impingement Cooling From a Circular Jet in a Cross Flow,” Proceedings of 2nd International Heat Transfer Conference, pp. 719–730.
4.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat Transfer Characteristics of Impinging Jets
,”
Int. J. Heat Mass Transf.
,
8
, pp.
1261
1272
.
5.
Goldstein
,
R. J.
, and
Franchett
,
M. E.
,
1988
, “
Heat Transfer From a Flat Surface to an Oblique Impinging Jet
,”
ASME J. Heat Transfer
,
110
, pp.
84
90
.
6.
Foss
,
J. F.
,
1979
, “
Measurements in a Large-Angle Oblique Jet Impingement Flow
,”
AIAA J.
,
17
(
8
), pp.
801
802
.
7.
Goldstein
,
R. J.
,
Sobolik
,
K. A.
, and
Seol
,
W. S.
,
1990
, “
Effect of Entrainment on the Heat Transfer to a Heated Circular Aid Jet Impinging on a Flat Surface
,”
ASME J. Heat Transfer
,
112
, pp.
608
611
.
8.
Goldstein
,
R. J.
, and
Seol
,
W. S.
,
1991
, “
Heat Transfer to a Row of Impinging circular Air Jets Including the Effects of Entrainment
,”
Int. J. Heat Mass Transf.
,
34
(
8
), pp.
2133
2147
.
9.
Viets
,
H.
,
1975
, “
Flip-Flop Jet Nozzle
,”
AIAA J.
,
13
(
8
), pp.
1375
1379
.
10.
Raman
,
G.
,
Hailye
,
M.
, and
Rice
,
E.
,
1993
, “
Flip-Flop Jet Nozzle Extended to Supersonic Flows
,”
AIAA J.
,
31
(
6
), pp.
1028
1035
.
11.
Herr, F., and Camci, C., 1994, “Validation of an Analytical Model for an Unsteady Planar Jet with Self-Sustained Oscillations,” AIAA paper 94-2205.
12.
Herr, F., 1995, “Turbulent Transport in a Planar Jet with Self-Sustained Deterministic Oscillations and the Character of Impinging Region Heat Transfer,” Ph.D. thesis, Dept. of Aerospace Engineering, Pennsylvania State University, University Park, PA.
13.
Herr, F., and Camci, C. 1994, “Turbulent Mixing and Transport in a Planar Jet with Self-Sustained Deterministic Oscillations,” 1994 ASME Winter Annual Meeting, ASME AD-Vol. 40, ASME, New York.
14.
Page
,
R. H.
,
Chinnock
,
P. S.
, and
Seyed-Yagoobi
,
J.
,
1996
, “
Self-Oscillation Enhancement of Impingement Jet Heat Transfer
,”
AIAA Journal of Thermophysics
,
10
(
2
), pp.
380
382
.
15.
Azevedo
,
L. F. A.
,
Webb
,
B. W.
, and
Queiroz
,
M.
,
1994
, “
Pulsed Air Jet Impingement Heat Transfer
,”
Exp. Therm. Fluid Sci.
,
8
, pp.
206
213
.
16.
Liu
,
T.
, and
Sullivan
,
J. P.
,
1996
, “
Heat Transfer and Flow Structures in an Excited Circular Impinging Jet
,”
Int. J. Heat Mass Transf.
,
39
(
17
), pp.
3695
3706
.
17.
Mladin
,
E. C.
, and
Zumbrunnen
,
D. A.
,
1997
, “
Local Convective Heat Transfer to Submerged Pulsating Jets
,”
Int. J. Heat Mass Transf.
,
40
(
14
), pp.
3305
3321
.
18.
Lueptow
,
R. W.
,
Breuer
,
K. S.
, and
Haritonidis
,
J. H.
,
1988
, “
Computer-Aided Calibration of x-Probes Using a Look-up Table
,”
Exp. Fluids
,
6
, pp.
115
118
.
19.
Wiedner
,
B. G.
, and
Camci
,
C.
,
1996
, “
Deterministic of Convective Heat Flux on Steady-State Heat Transfer Surfaces With Arbitrarily Specified Boundaries
,”
ASME J. Heat Transfer
,
118
, pp.
101
107
.
20.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
21.
Hussain
,
A. K. M. F.
, and
Reynolds
,
W. C.
,
1970
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow
,”
J. Fluid Mech.
,
41
, pp.
241
258
.
22.
Panchapakesan
,
N. R.
, and
Lumley
,
J. L.
,
1993
, “
Turbulence Measurements in Axisymmetric Jets of Air and Helium,” Part 1. Air Jet
,”
J. Fluid Mech.
,
246
, pp.
197
223
.
You do not currently have access to this content.