Molecular dynamics (MD) simulations were employed to investigate the mechanism and kinetics of the solid-state sintering of two crystalline gold nanoparticles (4.410.0nm) induced by low energy laser heating. At low temperature (300K), sintering can occur between two bare nanoparticles by elastic and plastic deformation driven by strong local potential gradients. This initial neck growth occurs very fast (<150ps), and is therefore essentially insensitive to laser irradiation. This paper focuses on the subsequent longer time scale intermediate neck growth process induced by laser heating. The classical diffusion based neck growth model is modified to predict the time resolved neck growth during continuous heating with the diffusion coefficients and surface tension extracted from MD simulation. The diffusion model underestimates the neck growth rate for smaller particles (5.4nm) while satisfactory agreement is obtained for larger particles (10nm). The deviation is due to the ultrafine size effect for particles below 10nm. Various possible mechanisms were identified and discussed.

1.
Ko
,
S. H.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
,
Luscombe
,
C. K.
,
Frechet
,
J. M.J.
, and
Poulikakos
,
D.
, 2007, “
Air Stable High Resolution Organic Transistors by Selective Laser Sintering of Ink-Jet Printed Metal Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
90
,
141103
.
2.
Ko
,
S. H.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
,
Luscombe
,
C. K.
,
Fréchet
,
J. M. J.
, and
Poulikakos
,
D.
, 2007, “
All-Inkjet-Printed Flexible Electronics Fabrication on a Polymer Substrate by Low-Temperature High-Resolution Selective Laser Sintering of Metal Nanoparticles
,”
Nanotechnology
0957-4484,
18
(
34
),
345202
.
3.
Ko
,
S. H.
,
Chung
,
J.
,
Pan
,
H.
,
Grigoropoulos
,
C. P.
, and
Poulikakos
,
D.
, 2007, “
Fabrication of Multiplayer Passive and Active Electric Components on Polymer Using Inkjet Printing and Low Temperature Laser Processing
,”
Sens. Actuators, A
0924-4247,
134
(
1
), pp.
161
168
.
4.
Kim
,
S. J.
, and
Jang
,
D.
, 2005, “
Laser-Induced Nanowelding of Gold Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
86
,
033112
.
5.
Kuczinski
,
G. C.
, 1949, “
Self-Diffusion in Sintering of Metallic Particles
,”
Trans. Am. Inst. Min., Metall. Pet. Eng.
0096-4778,
185
, pp.
169
178
.
6.
Johnson
,
D. L.
, 1968, “
New Method of Obtaining Volume, Grain-Boundary, and Surface Diffusion Coefficients From Sintering Data
,”
J. Appl. Phys.
0021-8979,
40
(
1
), pp.
192
200
.
7.
Nichols
,
F. A.
, and
Mullins
,
W. W.
, 1965, “
Morphological Changes of a Surface of Revolution Due to Capillarity-Induced Surface Diffusion
,”
J. Appl. Phys.
0021-8979,
36
(
6
), pp.
1826
1835
.
8.
Frenkel
,
J.
, 1945, “
Viscous Flow of Crystalline Bodies Under the Action of Surface Tension
,”
J. Phys. (USSR)
0368-3400,
4
(
5
), pp.
385
391
.
9.
Koch
,
W.
, and
Friedlander
,
S. K.
, 1990, “
The Effect of Particle Coalescence of the Surface Area of a Coagulating Aerosol
.”
J. Colloid Interface Sci.
0021-9797,
140
(
2
), pp.
419
427
.
10.
Friendlander
,
S. K.
, and
Wu
,
M. K.
, 1994, “
Linear Rate Law for the Decay of the Excess Surface Area of a Coalescing Solid Particle
,”
Phys. Rev. B
0163-1829,
49
(
5
), pp.
3622
3624
.
11.
Lehtinen
,
K. E.
, and
Zachariah
,
M.
, 2002, “
Energy Accumulation in Nanoparticle Collision and Coalescence Processes
,”
J. Aerosol Sci.
0021-8502,
33
, pp.
357
368
.
12.
Zhu
,
H.
, and
Averback
,
R. S.
, 1996, “
Sintering Processes of Two Nanoparticles: A Study of Molecular-Dynamics Simulations
,”
Philos. Mag. Lett.
0950-0839,
73
(
1
), pp.
27
33
.
13.
Zeng
,
P.
,
Zajac
,
S.
,
Clapp
,
P. C.
, and
Rifkin
,
J. A.
, 1998, “
Nanoparticle Sintering Simulation
,”
Mater. Sci. Eng., A
0921-5093,
252
, pp.
301
306
.
14.
Combe
,
N.
,
Jensen
,
P.
, and
Pimpinelli
,
A.
, 2000, “
Changing Shapes in the Nanoworld
,”
Phys. Rev. Lett.
0031-9007,
85
(
1
), pp.
110
113
.
15.
Pan
,
J.
, 2004, “
Solid-State Diffusion Under a Large Driving Force and the Sintering of Nanosized Particles
,”
Philos. Mag. Lett.
0950-0839,
84
(
5
), pp.
303
310
.
16.
Xing
,
Y.
, and
Rosner
,
D.
, 1999, “
Prediction of Spherule Size in Gas Phase Nanoparticle Synthesis
,”
J. Nanopart. Res.
1388-0764,
1
, pp.
277
291
.
17.
Arcidiacono
,
S.
,
Bieri
,
N. R.
,
Poulikakos
,
D.
, and
Grigoropoulos
,
C. P.
, 2004, “
On the Coalescence of Gold Nanoparticles
,”
Int. J. Multiphase Flow
0301-9322,
30
, pp.
979
994
.
18.
Ercolessi
,
F.
,
Parrinello
,
M.
, and
Tosatti
,
E.
, 1998, “
Simulation of Gold in the Glue Model
,”
Philos. Mag. A
0141-8610,
58
(
1
), pp.
213
226
.
19.
Steinhardt
,
P. J.
,
Nelson
,
D. R.
, and
Ronchetti
,
M.
, 1993, “
Bond-Orientational Order in Liquids and Glasses
,”
Phys. Rev. B
0163-1829,
28
(
2
), pp.
784
805
.
20.
Zhang
,
W.
, and
Gladwell
,
I.
, 1998, “
Sintering of Two Particles by Surface and Grain Boundary Diffusion—A Three-Dimensional Model and a Numerical Study
,”
Comput. Mater. Sci.
0927-0256,
12
, pp.
84
104
.
21.
Saitoh
,
K.
, and
Kitagawa
,
H.
, 1999, “
Molecular Dynamics Study of Surface Effects on Atomic Migration Near Aluminum Grain Boundary
,”
Comput. Mater. Sci.
0927-0256,
14
, pp.
13
18
.
22.
Thompson
,
S. M.
,
Gubbins
,
K. E.
,
Walton
,
J. P. R. B
,
Chantry
,
R. A. R.
, and
Rowlinson
,
J. S.
, 1984, “
A Molecular Dynamics Study of Liquid Drops
,”
J. Chem. Phys.
0021-9606,
81
(
1
), pp.
530
542
.
23.
Medasani
,
B.
,
Park
,
Y. H.
, and
Vasiliev
,
I.
, 2007, “
Theoretical Study of the Surface Energy, Stress, and Lattice Contributing of Silver Nanoparticles
,”
Phys. Rev. B
0163-1829,
75
, p.
235436
.
24.
Murr
,
L. E.
, 1975,
Interfacial Phenomena in Metals and Alloy
,
Addison-Wesley
,
Reading, MA
.
25.
Schiotz
,
J.
,
Tolla
,
F. D. D.
, and
Jacobsen
,
K. W.
, 1998, “
Softening of Nanocrystalline Metals at Very Small Grain Sizes
,”
Nature (London)
0028-0836,
391
(
5
), pp.
561
563
.
26.
Zachariah
,
M.
, and
Carrier
,
M.
, 1999, “
Molecular Dynamics Computation of Gas-Phase Nanoparticle Sintering: A Comparison With Phenomenological Models
,”
J. Aerosol Sci.
0021-8502,
30
(
9
), pp.
1139
1151
.
27.
Exner
,
H.
, 1979, “
Principles of Single Phase Sintering
,”
Reviews on Powder Metallurgy and Physical Ceramics
,
1
, pp.
7
251
.
28.
Wang
,
Y.
, and
Dellago
,
C.
, 2003, “
Structural and Morphological Transitions in Gold Nanorods: A Computer Simulation Study
,”
J. Phys. Chem. B
1089-5647,
107
, pp.
9214
9219
.
You do not currently have access to this content.