The effects of the thermophysical properties of the working fluid on the performance of a microheat pipe of triangular cross section are investigated. For this purpose, five different working fluids are selected: water, hepthane, ammonia, methanol, and ethanol. For operating temperatures ranging from 20°Cto100°C, it is found that the behavior of the heat transport capacity is dominated by a property of the working fluid, which is equal to the ratio of the surface tension and dynamic viscosity σμl. This property has the same dimension as velocity and can be interpreted as a measure of the working fluid’s rate of circulation, which can be provided by capillarity after overcoming the effect of viscosity. Of the five working fluids selected, ammonia is preferable for operating temperatures below 50°C since it yields the highest heat transport capacity; however, water is the preferred working fluid for temperatures above 50°C.

1.
Cotter
,
T. P.
, 1984, “
Principles and Prospects of Micro Heat Pipes
,”
Proceedings of the Fifth International Heat Pipe Conference
, Tsukuba, Japan, May 14–18, pp.
328
335
.
2.
Babin
,
B. R.
,
Peterson
,
G. P.
, and
Wu
,
D.
, 1990, “
Steady-State Modeling and Testing of a Micro Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
595
601
.
3.
Peterson
,
G. P.
,
Duncan
,
A. B.
, and
Weichold
,
M. H.
, 1993, “
Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
751
756
.
4.
Khrustalev
,
D.
, and
Faghri
,
A.
, 1998, “
Thermal Analysis of a Micro Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
189
198
.
5.
Ha
,
J. M.
, and
Peterson
,
G. P.
, 1994, “
Analytical Prediction of the Axial Dryout Point for Evaporating Liquids in Triangular Microgrooves
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
498
503
.
6.
Longtin
,
J. P.
,
Badran
,
B.
, and
Gerner
,
F. M.
, 1994, “
A One-Dimensional Model of a Micro Heat Pipe During Steady-State Operation
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
709
715
.
7.
Wang
,
C.-Y.
,
Groll
,
M.
,
Rosler
,
S.
, and
Tu
,
C.-J.
, 1994, “
Porous Medium Model For Two Phase Flow in Mini Channels With Application to Micro Heat Pipes
,”
Heat Recovery Syst. CHP
0890-4332,
14
, pp.
377
389
.
8.
Ma
,
H. B.
, and
Peterson
,
G. P.
, 1996, “
Experimental Investigation of the Maximum Heat Transport in Triangular Grooves
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
740
746
.
9.
Ha
,
J. M.
, and
Peterson
,
G. P.
, 1996, “
The Interline Heat Transfer of Evaporating Thin Films along a Micro Grooved Surface
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
747
755
.
10.
Pratt
,
D. M.
,
Brown
,
J. R.
, and
Hallinan
,
K. P.
, 1998, “
Thermocapillary Effects on the Stability of a Heated, Curved Meniscus
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
220
226
.
11.
Ma
,
H. B.
, and
Peterson
,
G. P.
, 1998, “
The Minimum Meniscus Radius and Capillary Heat Transport Limit in Micro Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
227
233
.
12.
Peterson
,
G. P.
, and
Ha
,
J. M.
, 1998, “
Capillary Performance of Evaporating Flow in Micro Grooves, An Approximate Analytical Approach and Experimental Investigation
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
743
751
.
13.
Tio
,
K.-K.
,
Liu
,
C. Y.
, and
Toh
,
K. C.
, 2000, “
Thermal Analysis of Micro Heat Pipes Using a Porous-Medium Model
,”
Heat Mass Transfer
0947-7411,
36
, pp.
21
28
.
14.
Sugumar
,
D.
, and
Tio
,
K.-K.
, 2006, “
Thermal Analysis of Inclined Micro Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
198
202
.
15.
Ma
,
H. B.
,
Lofgreen
,
K. P.
, and
Peterson
,
G. P.
, 2006, “
An Experimental Investigation of a High Heat Flux Heat Pipe Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
128
, pp.
18
22
.
16.
Peterson
,
G. P.
, 1992, “
Overview of Micro Heat Pipe Research and Development
,”
Appl. Mech. Rev.
0003-6900,
45
, pp.
175
189
.
17.
Peterson
,
G. P.
, 1996, “
Modeling, Fabrication and Testing of Micro Heat Pipes: An Update
,”
Appl. Mech. Rev.
0003-6900,
49
, pp.
S175
S183
.
18.
Vasiliev
,
L. L.
, 2008, “
Micro and Miniature Heat Pipes—Electronic Component Coolers
,”
Appl. Therm. Eng.
1359-4311,
28
, pp.
266
273
.
19.
Dunn
,
P. D.
, and
Reay
,
D. A.
, 1994,
Heat Pipes
, 4th ed.,
Pergamon
,
New York
.
20.
Dullien
,
F. A. L.
, 1992,
Porous Media: Fluid Transport and Pore Structure
, 2nd ed.,
Academic
,
San Diego, CA.
21.
Shah
,
R. K.
, and
London
,
A. L.
, 1978,
Laminar Flow Forced Convection in Ducts
,
Academic
,
New York
.
You do not currently have access to this content.