A combined experimental and numerical investigation of the heat transfer characteristics within an array of impinging jets has been conducted. The experiments were carried out in a perspex model using a transient liquid crystal method. Local jet temperatures were measured at several positions on the impingement plate to account for an exact evaluation of the heat transfer coefficient. The effects of the variation in different impingement patterns, jet-to-plate spacing, crossflow schemes, and jet Reynolds number on the distribution of the local Nusselt number and the related pressure loss were investigated experimentally. In addition to the measurements, a numerical investigation was conducted. The motivation was to evaluate whether computational fluid dynamics (CFD) can be used as an engineering design tool in the optimization of multijet impingement configurations. This required, as a first step, a validation of the numerical results. For the present configuration, this was achieved assessing the degree of accuracy to which the measured heat transfer rates could be computed. The overall agreement was very good and even local heat transfer coefficients were predicted at high accuracy. The numerical investigation showed that state-of-the-art CFD codes can be used as suitable means in the thermal design process of such configurations.

1.
Boyce
,
M. P.
, 2001,
Gas Turbine Engineering Handbook
, 2nd ed.,
Gulf
,
USA
.
2.
Martin
,
H.
, 1977, “
Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
, pp.
1
60
.
3.
Han
,
B.
, and
Goldstein
,
R. J.
, 2001, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
147
161
.
4.
Jambunathan
,
K.
,
Lai
,
E.
,
Moss
,
M.
, and
Button
,
B.
, 1992, “
A Review of Heat Transfer Data for Single Circular Jet Impingement
,”
Int. J. Heat Fluid Flow
0142-727X,
13
, pp.
106
115
.
5.
Viskanta
,
R.
, 1993, “
Heat Transfer to Impinging Isothermal Gas and Flame Jets
,”
Exp. Therm. Fluid Sci.
0894-1777,
6
, pp.
111
134
.
6.
Weigand
,
B.
, and
Spring
,
S.
, 2009, “
Multiple Jet Impingement—A Review
,”
International Symposium on Heat Transfer in Gas Turbine Systems
, Antalya, Turkey.
7.
Kercher
,
D. M.
, and
Tabakoff
,
W.
, 1970, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
0022-0825,
92
, pp.
73
82
.
8.
Hollworth
,
B. R.
, and
Berry
,
R. D.
, 1978, “
Heat Transfer From Arrays of Impinging Jets With Large Jet-to-Jet Spacing
,”
ASME J. Heat Transfer
0022-1481,
100
, pp.
352
357
.
9.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
, 1979, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
526
531
.
10.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
, 1980, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
132
137
.
11.
Florschuetz
,
L. W.
,
Truman
,
C. R.
, and
Metzger
,
D. E.
, 1981, “
Streamwise Flow and Heat Transfer Distributions for Jet Array Impingement With Crossflow
,”
ASME J. Heat Transfer
0022-1481,
103
, pp.
337
342
.
12.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
, 1994, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
369
374
.
13.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
,
Jones
,
T. V.
, and
Kohler
,
S. T.
, 1996, “
Comparison and Prediction of Local and Average Heat Transfer Coefficients Under an Array of Inline and Staggered Impinging Jet
,”
ASME
Paper No. 96-GT-163.
14.
Son
,
C.
,
Gillespie
,
D.
, and
Ireland
,
P. T.
, 2000, “
Heat Transfer and Flow Characteristics of an Engine Representative Impingement Cooling System
,”
ASME
Paper No. 2000-GT-219.
15.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2002, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,”
ASME
Paper No. GT-2002-30473.
16.
Bailey
,
J. C.
,
Intile
,
J.
,
Fric
,
T. F.
,
Tolpadi
,
A. K.
,
Nirmalan
,
N. V.
, and
Bunker
,
R. S.
, 2003, “
Experimental and Numerical Study of Heat Transfer in a Gas Turbine Combustor Liner
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
125
, pp.
994
1002
.
17.
Park
,
J.
,
Goodro
,
M.
,
Ligrani
,
P.
,
For
,
M.
, and
Moon
,
H. K.
, 2007, “
Separate Effects of Mach Number and Reynolds Number on Jet Array Impingement Heat Transfer
,”
ASME J. Turbomach.
0889-504X,
129
, pp.
269
280
.
18.
Goodro
,
M.
,
Park
,
J.
,
Ligrani
,
P.
,
Fox
,
M.
, and
Moon
,
H. K.
, 2008, “
Effects of Hole Spacing on Spatially-Resolved Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
6243
6253
.
19.
Geers
,
L. F. G.
,
Tummers
,
M. J.
,
Bueninck
,
T. J.
, and
Hanjalic
,
K.
, 2008, “
Heat Transfer Correlation for Hexagonal an In-Line Arrays of Impinging Jets
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
5389
5399
.
20.
Attalla
,
M. A. M.
, 2005, “
Experimental Investigation of Heat Transfer Characteristics Form Arrays of Free Impinging Circular Jets and Hole Channels
,” Ph.D. thesis, Uni-Magdeburg, Germany.
21.
Spring
,
S.
,
Weigand
,
B.
,
Krebs
,
W.
, and
Hase
,
M.
, 2008, “
CFD Heat Transfer Predictions for a Gas Turbine Combustor Impingement Cooling Configuration
,”
Proceedings of the 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Paper No. ISROMAC12-2008-20222.
22.
Polat
,
S.
,
Huang
,
B.
,
Mujumdar
,
A. S.
, and
Douglas
,
W. J. M.
, 1989, “
Numerical Flow and Heat Transfer Under Impinging Jets: A Review
,”
Annu. Rev. Heat Transfer
1049-0787,
2
, pp.
157
197
.
23.
Zuckerman
,
N.
, and
Lior
,
N.
, 2005, “
Impingement Heat Transfer: Correlations and Numerical Modeling
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
544
552
.
24.
Rao
,
G. A.
,
Kitron-Belinkov
,
M.
, and
Levy
,
Y.
, 2009, “
Numerical Analysis of a Multiple Jet Impingement System
,”
ASME
Paper No. GT-2009-59719.
25.
Zu
,
Y. Q.
,
Yan
,
Y. Y.
, and
Maltson
,
J. D.
, 2009, “
CFD Prediction for Multi-Jet Impingement Heat Transfer
,”
ASME
Paper No. GT-2009-59488.
26.
Spring
,
S.
,
Lauffer
,
D.
,
Weigand
,
B.
, and
Hase
,
M.
, 2010, “
Experimental and Numerical Investigation of Impingement Cooling in a Combustor Liner Heat Shield
,”
ASME J. Turbomach.
0889-504X,
132
, p.
011003
.
27.
Obot
,
N. T.
, and
Trabold
,
T. A.
, 1987, “
Impingement Heat Transfer Within Arrays of Circular Jets: Part 1—Effects of Minimum, Intermediate, and Complete Crossflow for Small and Large Spacing
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
872
879
.
28.
Kanokjaruvijit
,
K.
, and
Martinez-Botas
,
R. F.
, 2008, “
Heat Transfer and Pressure Investigation of Dimple Impingement
,”
ASME J. Turbomach.
0889-504X,
130
, p.
011003
.
29.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
30.
Wagner
,
G.
,
Kotulla
,
M.
,
Ott
,
P.
,
Weigand
,
B.
, and
von Wolfersdorf
,
J.
, 2004, “
The Transient Liquid Crystal Technique: Influence of Surface Curvature and Finite Wall Thickness
,” ASME Paper No. GT2004-53553.
31.
Kays
,
W. M.
,
Crawford
,
M. E.
, and
Weigand
,
B.
, 2004,
Convective Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
32.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
, 2007, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng., Part A
0957-6509,
221
(
6
), pp.
793
801
.
33.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
0025-6501,
75
, pp.
3
8
.
34.
Yan
,
Y.
, and
Owen
,
J. M.
, 2002, “
Uncertainties in Transient Heat Transfer Measurements With Liquid Crystal
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
29
35
.
35.
Kingsley-Rowe
,
J. R.
,
Lock
,
G. D.
, and
Owen
,
J. M.
, 2005, “
Transient Heat Transfer Measurements Using Thermochromic Liquid Crystal: Lateral-Conduction Error
,”
Int. J. Heat Fluid Flow
0142-727X,
26
, pp.
256
263
.
36.
Spring
,
S.
,
Weigand
,
B.
,
Krebs
,
W.
, and
Hase
,
M.
, 2006, “
CFD Heat Transfer Predictions of a Single Circular Jet Impinging With Crossflow
,” AIAA Paper No. 2006-3589.
37.
Menter
,
F.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
38.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
, 2008, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
0098-2202,
130
, p.
078001
.
39.
Richardson
,
L.
, and
Gaunt
,
A.
, 1927, “
The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
226
, pp.
299
361
40.
Roache
,
P. J.
, 1994, “
A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluids Eng.
0098-2202,
116
, pp.
405
413
.
41.
Roache
,
P. J.
, 2003, “
Conservatism of the Grid Convergence Index in Finite Volume Computations on Steady-State Fluid Flow and Heat Transfer
,”
ASME J. Fluids Eng.
0098-2202,
125
, pp.
731
735
.
42.
Pope
,
S. B.
, 1978, “
An Explanation of the Turbulent Round-Jet/Plane-Jet Anomaly
,”
AIAA J.
0001-1452,
16
(
3
), pp.
279
281
.
43.
El-Gabry
,
L. A.
, and
Kaminski
,
D. A.
, 2005, “
Experimental Investigation of Local Heat Transfer Distribution on Smooth and Roughened Surfaces Under an Array of Angled Impinging Jets
,”
ASME J. Turbomach.
0889-504X,
127
, pp.
532
544
.
You do not currently have access to this content.