Off-axis high power diode laser (HPDL) cladding is commonly used for surface quality enhancement such as coating, part repairing, etc. Although some laser cladding models are available in literature, little has been reported on the modeling of powder flow and molten pool for a rectangular beam with side powder injection. In this article, a custom-designed flat nozzle delivers the powder material into a distinct molten pool formed by a HPDL with a rectangular beam. A powder model is first presented to reveal the powder flow behavior below the flat nozzle. Key parameters such as nozzle inclination angle, rectangular beam profile, shielding gas flow rates, and powder feed rate are incorporated so that spatial powder density, powder velocity, and temperature distribution are distinctly investigated. Then in order to describe thermal and fluidic behaviors around the molten pool formed by the rectangular beam, a three-dimensional self-consistent cladding model is developed with the incorporation of the distributed powder properties as input. The level set method is adopted to track the complex free surface evolution. Temperature fields and fluid motion in the molten pool area resulting from the profile of rectangular beam are distinctly revealed. The effect of continuous mass addition is also embedded into the governing equations, making the model more accurate. A HPDL cladding with little dilution is formed and the simulated results agree well with the experiment.

1.
Barnes
,
S.
,
Timms
,
N.
,
Bryden
,
B.
, and
Pashby
,
I.
, 2003, “
High Power Diode Laser Cladding
,”
J. Mater. Process. Technol.
0924-0136,
138
, pp.
411
416
.
2.
Nowotny
,
S.
,
Richter
,
A.
, and
Beyer
,
E.
, 1998, “
Laser Cladding Using High-Power Diode Lasers
,”
ICALEO’98 Proceedings, 85G
, pp.
68
74
.
3.
Li
,
L.
, 2000, “
The Advances and Characteristics of High-Power Diode Laser Materials Processing
,”
Opt. Lasers Eng.
0143-8166,
34
, pp.
231
253
.
4.
Bachmann
,
F.
, 2000, “
High Power Diode Laser Technology and Applications
,”
Proc. SPIE
0277-786X,
3888
, pp.
394
403
.
5.
Tuominen
,
J.
,
Hayhurst
,
P.
,
Eronen
,
V.
,
Vuoristo
,
P.
, and
Mantyla
,
T.
, 2003, “
Comparison of Muti-Feed and Off-Axis High Power Diode Laser (HPDL) Cladding
,”
Proc. SPIE
0277-786X,
4973
, pp.
116
127
.
6.
Schoeffel
,
K. C.
, and
Shin
,
Y. C.
, 2007, “
Laser Cladding of Two Hardfacing Alloys Onto Cylindrical Low Alloy Steel Substrates With a High Power Direct Diode Laser
,”
ASME
Paper No. MSEC2007-31112.
7.
Jouvard
,
J. M.
,
Grevey
,
D. F.
,
Lemoine
,
F.
, and
Vannes
,
A. B.
, 1997, “
Continuous Wave Nd:YAG Laser Cladding Modeling: A Physical Study of Track Creation During Low Power Processing
,”
J. Laser Appl.
1042-346X,
9
(
1
), pp.
43
50
.
8.
Picasso
,
M.
,
Marsden
,
C. F.
,
Wagniere
,
J. D.
,
Frenk
,
A.
, and
Rappaz
,
M.
, 1994, “
A Simple but Realistic Model for Laser Cladding
,”
Metall. Mater. Trans., B
,
25B
, pp.
281
291
.
9.
Hoadley
,
A. F. A.
, and
Rappaz
,
M.
, 1992, “
A Thermal Model of Laser Cladding by Powder Injection
,”
Metall. Trans. B
0360-2141,
23
(
5
), pp.
631
642
.
10.
Kaplan
,
A. F. H.
, and
Groboth
,
G.
, 2001, “
Process Analysis of Laser Beam Cladding
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
609
614
.
11.
Kumar
,
S.
, and
Roy
,
S.
, 2006, “
The Effect of Marangoni–Rayleigh–Benard Convection on the Process Parameters in Blown-Powder Laser Cladding Process—A Numerical Investigation
,”
Numer. Heat Transfer, Part A
1040-7782,
50
, pp.
689
704
.
12.
Choi
,
J.
,
Han
,
L.
, and
Hua
,
Y.
, 2005, “
Modeling and Experiments of Laser Cladding With Droplet Injection
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
978
986
.
13.
Toyserkani
,
E.
,
Khajepour
,
A.
, and
Corbin
,
S.
, 2003, “
Three-Dimensional Finite Element Modeling of Laser Cladding by Powder Injection: Effects of Powder Federate and Travel Speed on the Process
,”
J. Laser Appl.
1042-346X,
15
(
3
), pp.
153
160
.
14.
Huang
,
Y. L.
,
Liang
,
G. Y.
, and
Su
,
J. Y.
, 2004, “
3-D Transient Numerical Simulation on the Process of Laser Cladding by Powder Feeding
,”
J. Univ. Sci. Technol. Beijing
,
11
(
1
), pp.
13
17
.
15.
Han
,
L.
,
Liou
,
F. W.
, and
Phatak
,
K. M.
, 2004, “
Modeling of Laser Cladding With Powder Injection
,”
Metall. Mater. Trans. B
1073-5615,
35
, pp.
1139
1150
.
16.
Qi
,
H.
,
Mazumder
,
J.
, and
Ki
,
H.
, 2006, “
Numerical Simulation of Heat Transfer and Fluid Flow in Coaxial Laser Cladding Process for Direct Metal Deposition
,”
J. Appl. Physiol.
0021-8987,
100
, p.
024903
.
17.
He
,
X.
, and
Mazumder
,
J.
, 2007, “
Transport Phenomena During Direct Metal Deposition
,”
J. Appl. Physiol.
0021-8987,
101
, p.
053113
.
18.
Wen
,
S.
,
Shin
,
Y. C.
,
Murthy
,
J. Y.
, and
Sojka
,
P. E.
, 2009, “
Modeling of Coaxial Powder Flow for the Laser Direct Deposition Process
,”
Int. J. Heat Mass Transfer
0017-9310,
52
, pp.
5867
5877
.
19.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
Washington
.
20.
Serag-Eldin
,
M. A.
, and
Spalding
,
D. B.
, 1979, “
Computations of Three-Dimensional Gas Turbine Combustion Chamber
,”
J. Eng. Power
0022-0825,
101
, pp.
327
336
.
21.
Fluent, Inc.
, 2006, FLUENT 6.3 User Manual, Canonsburg, Pennsylvania.
22.
Launder
,
B. E.
, and
Spalding
,
D. B.
, 1972,
Lectures in Mathematical Models of Turbulence
,
Academic
,
London, UK
.
23.
Haider
,
A.
, and
Levenspiel
,
O.
, 1989, “
Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles
,”
Powder Technol.
0032-5910,
58
, pp.
63
70
.
24.
Pan
,
H.
,
Sparks
,
T.
,
Thakar
,
Y. D.
, and
Liou
,
F.
, 2006, “
The Investigation of Gravity Driven Metal Powder Flow in Coaxial Nozzle for Laser-Aided Direct Metal Deposition Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
541
553
.
25.
Pinkerton
,
A. J.
, and
Li
,
L.
, 2005, “
An Experimental and Numerical Study of the Influence of Diode Laser Beam Shape on Thin Wall Direct Metal Deposition
,”
J. Laser Appl.
1042-346X,
17
(
1
), pp.
47
56
.
26.
Osher
,
S.
, and
Fedkiw
,
R.
, 2003,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer
,
New York
.
27.
Asai
,
S.
, and
Muchi
,
I.
, 1978, “
Theoretical Analysis and Model Experiments on the Formation Mechanism of Channel-Type Segregation
,”
Trans. Iron Steel Inst. Jpn.
0021-1583,
18
, pp.
90
98
.
28.
Bennon
,
W. D.
, and
Incropera
,
F. P.
, 1987, “
A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems—I. Model Formulation
,”
Int. J. Heat Mass Transfer
0017-9310,
30
(
10
), pp.
2167
2170
.
29.
Huang
,
Y. L.
,
Yang
,
Y. Q.
,
Wei
,
G. Q.
,
Shi
,
W. Q.
, and
Li
,
Y. B.
, 2008, “
Boundary Coupled Dual-Equation on Mass Transfer in the Process of Laser Cladding
,”
Chin. Opt. Lett.
1671-7694,
6
(
5
), pp.
356
360
.
You do not currently have access to this content.