This work proposes a comprehensive and efficient optimization approach for designing surface patterning for increasing solar panel absorption efficiency using near-field radiation effects. Global and local optimization methods, such as the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton (BFGS-QN) and simulated annealing (SA), are employed for solving the inverse near-field radiation problem. In particular, a thin amorphous silicon (a-Si) solar panel with periodic silver nanowire patterning is considered. The design of the silver patterned solar panel is optimized to yield maximum enhancement in photon absorption. The optimization methods reproduce results found in the previous literature but with reduced computational expense. Additional geometric parameters, which are not discussed in previous work, are included in the optimization analysis, further allowing for increased absorption enhancement. Both the BFGS-QN and the SA methods give efficient results, providing designs with enhanced absorption.

References

1.
Drevillon
,
J.
, and
Ben-Abdallah
,
P.
, 2007, “
Inverse Design of Quasimonochromatic Light Sources in the Visible Range
,”
Proceedings of the 5th International Symposium on Radio Transmitter
,
Bodrum
,
Turkey
.
2.
Drevillon
,
J.
, and
Ben-Abdallah
,
P.
, 2007, “
Ab-Initio Design of Coherent Thermal Sources
,”
J. Appl. Phys.
,
102
(
11
), p.
114305
.
3.
Fu
,
C.
,
Zhang
,
Z.
, and
Tanner
,
D.
, 2005, “
Planar Heterogeneous Structures for Coherent Emission of Radiation
,”
Opt. Lett.
,
30
, pp.
1873
1875
.
4.
Greffet
,
J.
,
Carminati
,
R.
,
Joulain
,
K.
,
Mulet
,
J.
,
Mainguy
,
S.
, and
Chen
,
Y.
, 2002, “
Coherent Emission of Light by Thermal Sources
,”
Nature (London)
,
416
, pp.
61
64
.
5.
Greffet
,
J. J.
, and
Henkel
,
C.
, 2007, “
Coherent Thermal Radiation
,”
Contemp. Phys.
,
48
, pp.
183
194
.
6.
Laroche
,
M.
,
Arnold
,
C.
,
Marquier
,
E.
,
Carminati
,
R.
,
Greffet
,
J.
,
Collin
,
S.
,
Bardou
,
N.
, and
Pelouard
,
J.
, 2005, “
Highly Directional Radiation Generated by a Tungsten Thermal Source
,”
Opt. Lett.
,
30
, pp.
2623
2625
.
7.
Lee
,
B.
, and
Zhang
,
Z.
, 2007, “
Coherent Thermal Emission From Modified Periodic Multilayer Structures
,”
ASME Trans. J. Heat Transfer
,
129
, pp.
17
27
.
8.
Lee
,
B.
, and
Zhang
,
Z.
, 2006, “
Design and Fabrication of Planar Multilayer Structures With Coherent Thermal Emission Characteristics
,”
J. Appl. Phys.
,
100
(
6
), p.
063529
.
9.
Lee
,
B.
,
Fu
,
C.
, and
Zhang
,
Z.
, 2005, “
Coherent Thermal Emission From One-Dimensional Photonic Crystals
,”
Appl. Phys. Lett.
,
87
(
7
), p.
071904
.
10.
Narayanaswamy
,
A.
, and
Chen
,
G.
, 2005, “
Direct Computation of Thermal Emission From Nanostructures
,”
Annu. Rev. Heat Transfer
,
14
, pp.
169
195
.
11.
Sentenac
,
A.
, and
Greffet
,
J.
, 1994, “
Design of Surface Microrelief With Selective Radiative Properties
,”
Int. J. Heat Mass Transfer
,
37
, pp.
553
558
.
12.
Shchegrov
,
A.
,
Carminati
,
K. J. R.
, and
Greffet
,
J.
, 2000, “
Near-Field Spectral Effects Due to Electromagnetic Surface Excitations
,”
Phys. Rev. Lett.
,
85
, pp.
1548
1551
.
13.
Rockstuhl
,
C.
,
Fahr
,
S.
, and
Lederer
,
F.
, 2008, “
Absorption Enhancement in Solar Cells by Localized Plasmon Polaritons
,”
J. Appl. Phys.
,
104
(
12
), p.
123102
.
14.
Tumbleston
,
J.
,
Ko
,
D.
,
Samulski
,
E.
, and
Lopez
,
R.
, 2009, “
Absorption and Quasiguided Mode Analysis of Organic Solar Cells With Photonic Crystal Photoactive Layers
,”
Opt. Express
,
17
(
9
), pp.
7670
7681
.
15.
Robinson
,
J.
, and
Rahmat-Samii
,
Y.
, 2004, “
Particle Swarm Optimization in Electromagnetics
,”
IEEE Trans. Antennas Propag.
,
52
(
2
), pp.
397
407
.
16.
Beck
,
F.
,
Polman
,
A.
, and
Catchpole
,
K.
, 2009, “
Tunable Light Trapping for Solar Cells Using Localized Surface Plasmons
,”
J. Appl. Phys.
,
105
, p.
114310
.
17.
Niggemann
,
M.
,
Glatthaar
,
M.
,
Gombert
,
A.
,
Hinsch
,
A.
, and
Wittwer
,
V.
, 2004, “
Diffraction Gratings and Buried Nano-Electrodes Architectures for Organic Solar Cells
,”
Thin Solid Films
,
451–452
, pp.
619
623
.
18.
Wang
,
W.
,
Wu
,
S.
,
Reinhardt
,
K.
,
Lu
,
Y.
, and
Chen
,
S.
, 2010, “
Broadband Light Absorption Enhancement in Thin-Film Silicon Solar Cells
,”
Nano Lett.
,
10
, pp.
2012
2018
.
19.
Taflove
,
A.
, and
Hagness
,
S.
, 2005,
Computational Electrodynamics: The Finite-Difference Time-Domain Method
, 3rd ed.,
Artech House
,
Norwood
.
20.
Pisarenco
,
M.
,
Maubach
,
J.
,
Setija
,
I.
, and
Mattheij
,
R.
, 2010, “
The Fourier Modal Method for Aperiodic Structures
,”
Technische Universiteit Eindhoven
, Technical Report No. 10–21.
21.
Jiao
,
D.
,
Jin
,
J.
,
Michielssen
,
E.
, and
Riley
,
D.
, 2003, “
Time-Domain Finite-Element Simulation of Three-Dimensional Scattering and Radiation Problems Using Shimaly Matched Layers
,”
IEEE Trans. Antennas Propag.
,
51
, pp.
296
305
.
22.
American Society for Testing and Materials, 2003, “
ASTM Standard Tables for Reference Solar Spectral Irradiances
,” Available at: http:www.astm.orghttp:www.astm.org.
23.
Johnson
,
P.
, and
Christy
,
R.
, 1972, “
Optical Constants of the Noble Metals
,”
Phys. Rev. B
,
6
(
12
), pp.
4370
4379
.
24.
Vetterl
,
O.
,
Finger
,
F.
,
Carius
,
R.
,
Hapke
,
P.
,
Houben
,
L.
,
Kluth
,
O.
,
Lambertz
,
A.
,
Mck
,
A.
,
Rech
,
B.
, and
Wagner
,
H.
, 2000, “
Intrinsic Microcrystalline Silicon: A New Material for Photovoltaics
,”
Sol. Energy Mater. Sol. Cells
,
62
(
1–2
), p.
97108
.
25.
Pala
,
R.
,
White
,
J.
,
Barnard
,
E.
,
Liu
,
J.
, and
Brongersma
,
M.
, 2009, “
Design of Plasmonic Thin-Film Solar Cells With Broadband Absorption Enhancements
,”
Adv. Mater.
,
21
, pp.
3504
3509
.
26.
Davidon
,
W.
, 1991, “
Variable Metric Method for Minimization
,”
SIAM J. Optim.
,
1
(
1
), pp.
1
17
.
27.
Fletcher
,
R.
, 1987,
Practical Methods of Optimization
,
Wiley
,
New York
.
28.
Gill
,
E. P.
, and
Leonard
,
M. W.
, 2001, “
Reduced-Hessian Quasi-Newton Methods for Unconstrained Optimization
,”
SIAM J. Optim.
12
(
1
), pp.
209
237
.
29.
Kirkpatrick
,
S.
,
Gelatt
,
C.
, and
Vecchi
,
M.
, 1983, “
Optimization by Simulated Annealing
,”
Science
,
220
, pp.
671
680
.
30.
Cerny
,
V.
, 1985, “
A Thermodynamical Approach to the Travelling Salesman Problem: An Efficient Simulation Algorithm
,”
J. Optim. Theory Appl.
,
45
, pp.
41
51
.
31.
Ingber
,
L.
, 1989, “
Very Fast Simulated Re-Annealing
,”
Math. Comput. Modell.
,
12
(
8
), pp.
967
973
.
32.
Wang
,
P.
, and
Chen
,
D.
, 1996, “
Continuous Optimization by a Variant of Simulated Annealing
,”
Comput. Optim. Appl.
,
6
, pp.
59
71
.
33.
Miettinen
,
K.
,
Makela
,
M.
, and
Maaranen
,
H.
, 2006, “
Efficient Hybrid Methods for Global Continuous Optimization Based on Simulated Annealing
,”
Comput. Oper. Res.
,
33
, pp.
1102
1116
.
34.
Hedar
,
A.
, and
Fukushima
,
M.
, 2002, “
Hybrid Simulated Annealing and Direct Search Method for Nonlinear Unconstrained Global Optimization
,”
Optim. Methods Software
,
17
, pp.
891
912
.
35.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
36.
Xu
,
G.
,
Chen
,
Y.
,
Tazawa
,
M.
, and
Jin
,
P.
, 2006, “
Surface Plasmon Resonance of Silver Nanoparticles on Vanadium Dioxide
,”
J. Phys. Chem. B
,
110
(
5
), pp.
2051
2056
.
You do not currently have access to this content.