This article presents a new method of estimation of thermophysical parameters using the hybrid Monte Carlo (HMC) algorithm that synergistically combines the advantages of a Markov chain Monte Carlo (MCMC) method and molecular dynamics. The advantages of this technique over the conventional MCMC are elucidated by considering the multiparameter estimation in heat transfer. Four situations were analyzed. The first two involve a two- and a three-parameters estimation in a lumped capacitance model, third involves estimation in a distributed system, and the fourth involves estimation in a fin system. The goal is to establish the potency and usefulness of the HMC method for a wide class of engineering problems.

References

1.
Vairaktaris
,
E.
,
2010
, “
Inverse Problems in Geomechanics
,”
Eur. J. Environ. Civ. Eng.
,
14
(
8–9
), pp.
1155
1166
.
2.
Kroon
,
M.
, and
Holzapfel
,
G. A.
,
2007
, “
A Model for Saccular Cerebral Aneurysm Growth by Collagen Fibre Remodelling
,”
J. Theor. Biol.
,
247
(
4
), pp.
775
787
.
3.
Issartel
,
J.-P.
,
Sharan
,
M.
, and
Modani
,
M.
,
2007
, “
An Inversion Technique to Retrieve the Source of a Tracer With an Application to Synthetic Satellite Measurements
,”
Proc. R. Soc. London Ser. A
,
463
(
2087
), pp.
2863
2886
.
4.
Balaji
,
C.
,
Konda Reddy
,
B.
, and
Herwig
,
H.
,
2013
, “
Incorporating Engineering Intuition for Parameter Estimation in Thermal Sciences
,”
Heat Mass Transfer
,
49
(
12
), pp.
1771
1785
.
5.
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2011
, “
A Bayesian Approach for the Simultaneous Estimation of Surface Heat Transfer Coefficient and Thermal Conductivity From Steady State Experiments on Fins
,”
Int. J. Heat Mass Transfer
,
54
(
13–14
), pp.
3060
3068
.
6.
Link
,
W. A.
,
Cam
,
E.
,
Nichols
,
J. D.
, and
Cooch
,
E. G.
,
2002
, “
Of Bugs and Birds: Markov Chain Monte Carlo for Hierarchical Modeling in Wildlife Research
,”
J. Wildl. Manage.
,
66
(
2
), pp.
277
291
.
7.
Sun
,
L.
,
Wang
,
Q.
, and
Zhan
,
H.
,
2013
, “
Likelihood of the Power Spectrum in Cosmological Parameter Estimation
,”
Astrophys. J.
,
777
(
1
), pp.
1
6
.
8.
Orlande
,
H. R. B.
,
Dulikravich
,
G. S.
, and
Colaco
,
M. J.
,
2008
, “
Application of Bayesian Filters to Heat Conduction Problem
,” International Conference on Engineering Optimization (
EngOpt
), Rio de Janeiro, Brazil, June 1–5, pp.
1
12
.
9.
Orlande
,
H. R. B.
,
2012
, “
Inverse Problems in Heat Transfer: New Trends on Solution Methodologies and Applications
,”
ASME J. Heat Transfer
,
134
(3), pp.
1
13
.
10.
Howell
,
J. R.
,
Ezekoye
,
O. A.
, and
Morales
,
J. C.
,
2000
, “
Inverse Design Model for Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
492
502
.
11.
Addepalli
,
B.
,
Sikorski
,
K.
,
Pardyjak
,
E. R.
, and
Zhdanov
,
M. S.
,
2011
, “
Source Characterization of Atmospheric Releases Using Stochastic Search and Regularized Gradient Optimization
,”
Inverse Probl. Sci. Eng.
,
19
(
8
), pp.
1097
1124
.
12.
Parthasarathy
,
S.
, and
Balaji
,
C.
,
2008
, “
Estimation of Parameters in Multi-Mode Heat Transfer Problems Using Bayesian Inference—Effect of Noise and a Priori
,”
Int. J. Heat Mass Transfer
,
51
(
9
), pp.
2313
2334
.
13.
Metropolis
,
N.
,
Rosenbluth
,
A. W.
,
Rosenbluth
,
M. N.
,
Teller
,
A. H.
, and
Teller
,
E.
,
1953
, “
Equation of State Calculations by Fast Computing Machines
,”
J. Chem. Phys.
,
21
(
6
), pp.
1087
1092
.
14.
Duane
,
S.
,
Kennedy
,
A. D.
,
Pendleton
,
B. J.
, and
Roweth
,
D.
,
1987
, “
Hybrid Monte Carlo
,”
Phys. Lett. B
,
195
(
2
), pp.
216
222
.
15.
Cheung
,
S. H.
, and
Beck
,
J. L.
,
2009
, “
Bayesian Model Updating Using Hybrid Monte Carlo Simulation With Application to Structural Dynamic Models With Many Uncertain Parameters
,”
J. Eng. Mech.
,
135
(
4
), pp.
243
255
.
You do not currently have access to this content.