Thermal management has a key role in the development of advanced electronic devices to keep the device temperature below a maximum operating temperature. Jet impingement and high conductive porous inserts can provide a high efficiency cooling and temperature control for a variety of applications including electronics cooling. In this work, advanced heat management devices are designed and numerically studied employing single and multijet impingement through porous-filled channels with inclined walls. The base of these porous-filled nonuniform heat exchanging channels will be in contact with the devices to be cooled; as such the base is subject to a high heat flux leaving the devices. The coolant enters the heat exchanging device through single or multijet impingement normal to the base, moves through the porous field and leaves through horizontal exit channels. For numerical modeling, local thermal nonequilibrium model in porous media is employed in which volume averaging over each of the solid and fluid phase results in two energy equations, one for solid phase and one for fluid phase. The cooling performance of more than 30 single and multijet impingement designs are analyzed and compared to achieve advantageous designs with low or uniform base temperature profiles and high thermal effectiveness. The effects of porosity value and employment of 5% titanium dioxide (TiO2) in water in multijet impingement cases are also investigated.

References

1.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2008
, “
A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
51
(
15–16
), pp.
3701
3711
.
2.
Bhattacharya
,
A.
, and
Mahajan
,
R. L.
,
2006
, “
Metal Foam and Finned Metal Foam Heat Sinks for Electronics Cooling in Buoyancy-Induced Convection
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
259
266
.
3.
Feng
,
S. S.
,
Kuang
,
J. J.
,
Wen
,
T.
,
Lu
,
T. J.
, and
Ichimiya
,
K.
,
2014
, “
An Experimental and Numerical Study of Finned Metal Foam Heat Sinks Under Impinging Air Jet Cooling
,”
Int. J. Heat Mass Transfer
,
77
, pp.
1063
1074
.
4.
Shih
,
W. H.
,
Chou
,
F. C.
, and
Hsieh
,
W. H.
,
2007
, “
Experimental Investigation of the Heat Transfer Characteristics of Aluminum-Foam Heat Sinks With Restricted Flow Outlet
,”
ASME J. Heat Transfer
,
129
(
11
), pp.
1554
1563
.
5.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.
6.
Yang
,
X. H.
,
Bai
,
J. X.
,
Yan
,
H. B.
,
Kuang
,
J. J.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2014
, “
An Analytical Unit Cell Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
Transp. Porous Media
,
102
(
3
), pp.
403
426
.
7.
Iasiello
,
M.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2019
, “
Thermal Conduction in Open-Cell Metal Foams: Anisotropy and Representative Volume Element
,”
Int. J. Therm. Sci.
,
137
, pp.
399
409
.
8.
Ranut
,
P.
,
2016
, “
On the Effective Thermal Conductivity of Aluminum Metal Foams: Review and Improvement of the Available Empirical and Analytical Models
,”
Appl. Therm. Eng.
,
101
, pp.
496
524
.
9.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Transfer
,
124
(
1
), pp.
120
129
.
10.
Zhao
,
C. Y.
,
Lu
,
W.
, and
Tassou
,
S. A.
,
2006
, “
Thermal Analysis on Metal-Foam Filled Heat Exchangers—Part II: Tube Heat Exchangers
,”
Int. J. Heat Mass Transfer
,
49
(
15–16
), pp.
2762
2770
.
11.
Rachedi
,
R.
, and
Chikh
,
S.
,
2001
, “
Enhancement of Electronic Cooling by Insertion of Foam Materials
,”
Heat Mass Transfer
,
37
(
4–5
), pp.
371
378
.
12.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Zwick
,
F.
,
2003
, “
Metal Foams as Compact High Performance Heat Exchangers
,”
Mech. Mater.
,
35
(
12
), pp.
1161
1176
.
13.
Mahjoob
,
S.
,
Vafai
,
K.
, and
Beer
,
R. N.
,
2008
, “
Rapid Microfluidic Thermal Cycler for Polymerase Chain Reaction Nucleic Acid Amplification
,”
Int. J. Heat Mass Transfer
,
51
(
9–10
), pp.
2109
2122
.
14.
Vafai
,
K.
,
2015
,
Handbook of Porous Media
, 3rd ed.,
Taylor & Francis/CRC Press
,
Boca Raton, FL
.
15.
Bintoro
,
J. S.
,
Akbarzadeh
,
A.
, and
Mochizuki
,
M.
,
2005
, “
A Closed-Loop Electronics Cooling by Implementing Single Phase Impinging Jet and Mini Channels Heat Exchanger
,”
Appl. Therm. Eng.
,
25
(
17–18
), pp.
2740
2753
.
16.
Husain
,
A.
,
Kim
,
S.-M.
, and
Kim
,
K.-Y.
,
2013
, “
Performance Analysis and Design Optimization of Micro-Jet Impingement Heat Sink
,”
Heat Mass Transfer
,
49
(
11
), pp.
1613
1624
.
17.
Sivasamy
,
A.
,
Selladurai
,
V.
, and
Kanna
,
P. R.
,
2010
, “
Jet Impingement Cooling of a Constant Heat Flux Horizontal Surface in a Confined Porous Medium: Mixed Convection Regime
,”
Int. J. Heat Mass Transfer
,
53
(
25–26
), pp.
5847
5855
.
18.
Saeid
,
N. H.
, and
Mohamad
,
A. A.
,
2006
, “
Jet Impingement Cooling of a Horizontal Surface in a Confined Porous Medium: Mixed Convection Regime
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
3906
3913
.
19.
Wong
,
K.-C.
, and
Saeid
,
N. H.
,
2009
, “
Numerical Study of Mixed Convection on Jet Impingement Cooling in an Open Cavity Filled With Porous Medium
,”
Int. Commun. Heat Mass Transfer
,
36
(
2
), pp.
155
160
.
20.
Rallabandi
,
A. P.
,
Rhee
,
D.-H.
,
Gao
,
A.
, and
Han
,
J.-C.
,
2010
, “
Heat Transfer Enhancement in Rectangular Channels With Axial Ribs or Porous Foam Under Through Flow and Impinging Jet Conditions
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4663
4671
.
21.
Das
,
S. K.
,
Choi
,
S. U. S.
, and
Patel
,
H. E.
,
2006
, “
Heat Transfer in Nanofluids—A Review
,”
Heat Transfer Eng.
,
27
(
10
), pp.
3
19
.
22.
Zing
,
C.
,
Mahjoob
,
S.
, and
Vafai
,
K.
,
2019
, “
Analysis of Porous Filled Heat Exchangers for Electronic Cooling
,”
Int. J. Heat Mass Transfer
,
133
, pp.
268
276
.
23.
Khanafer
,
K.
, and
Vafai
,
K.
,
2011
, “
A Critical Synthesis of Thermophysical Characteristics of Nanofluids
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4410
4428
.
24.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2009
, “
Analytical Characterization and Production of an Isothermal Surface for Biological and Electronics Applications
,”
ASME J. Heat Transfer
,
131
(
5
), p.
052604
.
25.
Wu
,
Z.
,
Caliot
,
C.
,
Flamant
,
G.
, and
Wang
,
Z.
,
2011
, “
Numerical Simulation of Convective Heat Transfer Between Air Flow and Ceramic Foams to Optimise Volumetric Solar Air Receiver Performances
,”
Int. J. Heat Mass Transfer
,
54
(
7–8
), pp.
1527
537
.
26.
Lee
,
D.-Y.
, and
Vafai
,
K.
,
1999
, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
,
42
(
3
), pp.
423
435
.
27.
Wang
,
P.
,
Vafai
,
K.
, and
Liu
,
D. Y.
,
2014
, “
Analysis of Radiative Effect Under Local Thermal Non-Equilibrium Conditions in Porous Media-Application to a Solar Air Receiver
,”
Numer. Heat Transfer, Part A: Appl.
,
65
(
10
), pp.
931
948
.
28.
Rodrigues
,
E. M. G.
,
Melicio
,
R.
,
Mendes
,
V. M. F.
, and
Catalao
,
J. P. S.
,
2011
, “
Simulation of a Solar Cell Considering Single-Diode Equivalent Circuit Model
,”
Renewable Energy Power Qual. J.
,
1
(
9
), pp.
369
373
.
29.
Pak
,
B. C.
, and
Cho
,
Y. I.
,
1998
, “
Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particles
,”
Exp. Heat Transfer
,
11
(
2
), pp.
151
170
.
30.
Saleh
,
R.
,
Putra
,
N.
,
Wibowo
,
R. E.
,
Septiadi
,
W. N.
, and
Prakoso
,
S. P.
,
2014
, “
Titanium Dioxide Nanofluids for Heat Transfer Applications
,”
Exp. Therm. Fluid Sci.
,
52
, pp.
19
29
.
31.
Ansys,
2016
, “
ANSYS FLUENT 17.1.0. User Guide
,”
Ansys Inc.
,
Canonsburg, PA
.
32.
Albojamal
,
A.
, and
Vafai
,
K.
,
2017
, “
Analysis of Single Phase, Discrete and Mixture Models, in Predicting Nanofluid Transport
,”
Int. J. Heat Mass Transfer
,
114
, pp.
225
237
.
33.
Vafai
,
K.
, and
Tien
,
C. L.
,
1981
, “
Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
,
24
(
2
), pp.
195
203
.
34.
Amiri
,
A.
, and
Vafai
,
K.
,
1994
, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
,
37
(
6
), pp.
939
954
.
35.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2000
, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
557
565
.
36.
Calmidi
,
V. V.
,
1998
, “
Transport Phenomena in High Porosity Fibrous Metal Foam
,” Ph.D. thesis, University of Colorado, Boulder, CO.
37.
Mahjoob
,
S.
, and
Vafai
,
K.
,
2009
, “
Analytical Characterization of Heat Transport Through Biological Media Incorporating Hyperthermia Treatment
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1608
1618
.
38.
Iasiello
,
M.
,
Cunsolo
,
S.
,
Bianco
,
N.
,
Chiu
,
W. K. S.
, and
Naso
,
V.
,
2017
, “
Developing Thermal Flow in Open-Cell Foams
,”
Int. J. Therm. Sci.
,
111
, pp.
129
137
.
You do not currently have access to this content.