Abstract

The numerical computation of hypersonic flows over blunt bodies is challenging due to the difficulty in robust and accurate wall heat flux prediction and proper capturing of shock waves free from the “carbuncle” phenomenon and other shock anomalies. It is important to understand how this behavior is affected due to rarefaction, which in turn will help to improve the study of aerospace vehicles flowing in rarefied and hypersonic regime. Recently, the SLAU2 convective scheme was shown to suppress the shock anomalies found in capturing strong shocks, however, it still showed a wavy pattern of heating. We have proposed a modification to the SLAU2 convective scheme to improve the accuracy of flow predictions in the presence of strong shocks. We then perform the numerical simulation of hypersonic viscous flow over a cylinder at Mach 8 and 16.34 at different Knudsen numbers. We carry out the study using the modified SLAU2 and the classical Roe schemes. We study how the shock anomalies found in the continuum hypersonic flows behave with the degree of rarefaction. It is found that the modified SLAU2 captures the shock free from the shock anomalies at all Kn, while the Roe scheme lacks robustness for Kn103. The variation of different flow properties such as heat flux, wall shear stress, and the Mach number is investigated. The peak heating value was observed to decrease with the degree of rarefaction.

References

1.
Kitamura
,
K.
, and
Shima
,
E.
,
2013
, “
Towards Shock-Stable and Accurate Hypersonic Heating Computations: A New Pressure Flux for AUSM-Family Schemes
,”
J. Comput. Phys.
,
245
, pp.
62
83
.10.1016/j.jcp.2013.02.046
2.
Chen
,
Z.
,
Huang
,
X.
,
Ren
,
Y.-X.
,
Xie
,
Z.
, and
Zhou
,
M.
,
2018
, “
Mechanism Study of Shock Instability in Riemann-Solver-Based Shock-Capturing Scheme
,”
AIAA J.
, 56(9), pp.
3636
3651
.
3.
Gao
,
Z.-X.
,
Xue
,
H.-C.
,
Zhang
,
Z.-C.
,
Liu
,
H.-P.
, and
Lee
,
C.-H.
,
2018
, “
A Hybrid Numerical Scheme for Aeroheating Computation of Hypersonic Reentry Vehicles
,”
Int. J. Heat Mass Transfer
,
116
, pp.
432
444
.10.1016/j.ijheatmasstransfer.2017.07.100
4.
Kitamura
,
K.
,
Roe
,
P.
, and
Ismail
,
F.
,
2009
, “
Evaluation of Euler Fluxes for Hypersonic Flow Computations
,”
AIAA J.
,
47
(
1
), pp.
44
53
.10.2514/1.33735
5.
Hoffman
,
K.
,
Siddiqui
,
M.
, and
Chiang
,
S.
,
1991
, “
Difficulties Associated With the Heat Flux Computations of High Speed Flows by the Navier-Stokes Equations
,”
AIAA
Paper No. 91-0467.10.2514/6.91-0467
6.
Paciorri
,
R.
, and
Bonfiglioli
,
A.
,
2009
, “
A Shock-Fitting Technique for 2D Unstructured Grids
,”
Comput. Fluids
,
38
(
3
), pp.
715
726
.10.1016/j.compfluid.2008.07.007
7.
Ivanov
,
M. S.
,
Khotyanovsky
,
D. V.
,
Shershnev
,
A. A.
,
Kudryavtsev
,
A. N.
,
Shevyrin
,
A. A.
,
Yonemura
,
S.
, and
Bondar
,
Y. A.
,
2011
, “
Rarefaction Effects in Hypersonic Flow About a Blunted Leading Edge
,”
Thermophys. Aeromechanics
,
18
(
4
), pp.
523
534
.10.1134/S0869864311040020
8.
Panda
,
H. S.
, and
Moulic
,
S. G.
,
2011
, “
An Analytical Solution for Natural Convective Gas Microflow in a Tall Vertical Enclosure
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
1
), pp.
145
154
.10.1243/09544062JMES1768
9.
Shoja-Sani
,
A.
,
Roohi
,
E.
,
Kahrom
,
M.
, and
Stefanov
,
S.
,
2014
, “
Investigation of Aerodynamic Characteristics of Rarefied Flow Around NACA 0012 Airfoil Using DSMC and NS Solvers
,”
Eur. J. Mech.-B
,
48
, pp.
59
74
.10.1016/j.euromechflu.2014.04.008
10.
Shima
,
E.
, and
Kitamura
,
K.
,
2009
, “
On New Simple Low-Dissipation Scheme of AUSM-Family for All Speeds
,”
AIAA
Paper No. 2009-136.10.2514/2009-136
11.
Kitamura
,
K.
, and
Shima
,
E.
,
2018
, “
Pressure-Equation-Based SLAU2 for Oscillation-Free, Supercritical Flow Simulations
,”
Comput. Fluids
,
163
, pp.
86
96
.10.1016/j.compfluid.2018.01.001
12.
Chang
,
C.-H.
, and
Liou
,
M.-S.
,
2007
, “
A Robust and Accurate Approach to Computing Compressible Multiphase Flow: Stratified Flow Model and AUSM+-Up Scheme
,”
J. Comput. Phys.
,
225
(
1
), pp.
840
873
.10.1016/j.jcp.2007.01.007
13.
Chakravarthy
,
K.
, and
Chakraborty
,
D.
,
2014
, “
Modified SLAU2 Scheme With Enhanced Shock Stability
,”
Comput. Fluids
,
100
, pp.
176
184
.10.1016/j.compfluid.2014.04.015
14.
Sheng Chen
,
S.
,
Yan
,
C.
,
Zhong
,
K.
,
Chao Xue
,
H.
, and
Long Li
,
E.
,
2018
, “
A Novel Flux Splitting Scheme With Robustness and Low Dissipation for Hypersonic Heating Prediction
,”
Int. J. Heat Mass Transfer
,
127
, pp.
126
137
.10.1016/j.ijheatmasstransfer.2018.06.121
15.
Sharma
,
V.
,
Assam
,
A.
, and
Eswaran
,
V.
,
2016
, “
Development of All Speed Three Dimensional Computational Fluid Dynamics Solver for Unstructured Grids
,”
Sixth International and 43rd National Conference on Fluid Mechanics and Fluid Power (FMFP)
, Allahabad, India, Dec. 15–17, p.
34
.
16.
Assam
,
A.
,
Kalkote
,
N. N.
,
Sharma
,
V.
, and
Eswaran
,
V.
,
2018
, “
An Automatic Wall Treatment for Spalart-Allmaras Turbulence Model
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061403
.10.1115/1.4039087
17.
Blazek
,
J.
,
2015
,
Computational Fluid Dynamics: Principles and Applications
,
Butterworth-Heinemann
,
Oxford, UK
.
18.
Holden
,
M.
,
Moselle
,
J.
,
Wieting
,
A.
, and
Glass
,
C.
,
1988
, “
Studies of Aerothermal Loads Generated in Regions of Shock/Shock Interaction in Hypersonic Flow
,”
26th Aerospace Sciences Meeting
, Reno, NV, Jan. 11–14.10.2514/6.1988-477
19.
Liou
,
M.-S.
,
2006
, “
A Sequel to AUSM—Part II: AUSM+-Up for All Speeds
,”
J. Comput. Phys.
,
214
(
1
), pp.
137
170
.10.1016/j.jcp.2005.09.020
20.
Einfeldt
,
B.
,
1988
, “
On Godunov-Type Methods for Gas Dynamics
,”
SIAM J. Numer. Anal.
,
25
(
2
), pp.
294
318
.10.1137/0725021
21.
Maxwell
,
J. C.
,
1879
, “
On Stresses in Rarified Gases Arising From Inequalities of Temperature
,”
Philos. Trans. R. Soc. London
, 170, pp.
231
256
.10.1098/rstl.1879.0067
22.
Smoluchowski von Smolan
,
M.
,
1898
, “
Ueber Wärmeleitung in Verdünnten Gasen
,”
Ann. Phys.
,
300
(
1
), pp.
101
130
.10.1002/andp.18983000110
23.
Le
,
N. T. P.
,
2010
, “
Nonequilibrium Boundary Conditions for the Navier-Stokes-Fourier Equations in Hypersonic Gas Flow Simulations
,” Ph.D. thesis, University of Strathclyde, Glasgow, Scotland.
24.
Le
,
N. T.
,
Vu
,
N. A.
, and
Loc
,
L. T.
,
2017
, “
New Type of Smoluchowski Temperature Jump Condition Considering the Viscous Heat Generation
,”
AIAA J.
,
55
(
2
), pp.
474
483
.10.2514/1.J055058
25.
Assam
,
A.
,
Kalkote
,
N.
,
Dongari
,
N.
, and
Eswaran
,
V.
,
2018
, “
Comprehensive Evaluation of a New Type of Smoluchowski Temperature Jump Condition
,”
AIAA J.
, 56(11), pp.
4621
4625
.
26.
Assam
,
A.
,
Kalkote
,
N.
,
Dongari
,
N.
, and
Eswaran
,
V.
,
2019
, “
Investigation of Non-Equilibrium Boundary Conditions Considering Sliding Friction for Micro/Nano Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
, 29(8), pp.
2501
2523
.10.1108/HFF-04-2018-0170
27.
Kalkote
,
N.
,
Assam
,
A.
, and
Eswaran
,
V.
,
2019
, “
Acceleration of Later Convergence in a Density-Based Solver Using Adaptive Time Stepping
,”
AIAA J.
,
57
(
1
), pp.
352
364
.10.2514/1.J057014
28.
Nikhil
,
K.
,
2019
, “
Towards Developing an Adaptive Time Stepping for Compressible Unsteady Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
2
), pp.
487
503
.10.1108/HFF-03-2018-0095
29.
Arias
,
O.
,
Falcinelli
,
O.
,
Fico
,
N.
, and
Elaskar
,
S.
,
2007
, “
Finite Volume Simulation of a Flow Over a NACA 0012 Using Jameson, Maccormack, Shu and TVD Esquemes
,”
Mec. Comput.
, 36, pp.
3097
3116
.https://cimec.org.ar/ojs/index.php/mc/article/view/1260
You do not currently have access to this content.