Abstract

A solid growth method (SGM) and a dual solid method (DSM), both recently developed, are each used to predict solid shapes that provide minimal total (conduction + radiation) resistance to heat transfer in a system involving conduction in a solid whose shape is to be determined, conduction in an adjoining gas, and radiation transfer between opaque, diffuse, and gray surfaces. The performance of each method is illustrated by examining solid configurations and temperature distributions that evolve as the mass of solid is gradually increased (SGM) or reconfigured (DSM). With use of either the SGM or the DSM, the solid evolves in a manner that enhances radiation heat transfer, and it is shown that neglecting radiation in the determination of solid configurations that optimize heat transfer performance is, in general, not justified. Despite the formalism of the DSM, which is based on topological optimization, the thermal performance of the DSM only marginally surpasses that of the SGM in terms of calculated total thermal resistance values, and only for cases involving a high solid thermal conductivity. For low solid thermal conductivity cases, the SGM outperforms the DSM with the difference in performance attributed to the inability of DSM to capture the fine solid structure of the SGM predictions.

References

1.
Bar-Cohen
,
A.
,
1979
, “
Fin Thickness for an Optimized Natural Convection Array of Rectangular Fins
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
101
(
3
), pp.
564
566
.10.1115/1.3451032
2.
Bar-Cohen
,
A.
,
Iyengar
,
M.
, and
Kraus
,
A. D.
,
2003
, “
Design of Optimum Plate-Fin Natural Convective Heat Sinks
,”
ASME J. Electron Packag.
,
125
(
2
), pp.
208
216
.10.1115/1.1568361
3.
Kim
,
D.
,
2012
, “
Thermal Optimization of Plate-Fin Heat Sinks With Fins of Variable Thickness Under Natural Convection
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
752
761
.10.1016/j.ijheatmasstransfer.2011.10.034
4.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
(
4
), pp.
799
816
.10.1016/0017-9310(96)00175-5
5.
Almogbel
,
M.
, and
Bejan
,
A.
,
2001
, “
Constructal Optimization of Nonuniformly Distributed Tree-Shaped Flow Structures for Conduction
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4185
4194
.10.1016/S0017-9310(01)00080-1
6.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
7.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscip. Optim.
,
48
(
6
), pp.
1031
1055
.10.1007/s00158-013-0978-6
8.
Li
,
Q.
,
Steven
,
G. P.
,
Xie
,
Y. M.
, and
Querin
,
O. M.
,
2004
, “
Evolutionary Topology Optimization for Temperature Reduction of Heat Conducting Fields
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5071
5083
.10.1016/j.ijheatmasstransfer.2004.06.010
9.
Gersborg-Hansen
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
,”
Struct. Multidiscip. Optim.
,
31
(
4
), pp.
251
259
.10.1007/s00158-005-0584-3
10.
Zhang
,
Y.
, and
Liu
,
S.
,
2008
, “
Design of Conducting Paths Based on Topology Optimization
,”
Heat Mass Transfer
,
44
(
10
), pp.
1217
1227
.10.1007/s00231-007-0365-1
11.
Gao
,
T.
,
Zhang
,
W. H.
,
Zhu
,
J. H.
,
Xu
,
Y. J.
, and
Bassir
,
D. H.
,
2008
, “
Topology Optimization of Heat Conduction Problem Involving Design-Dependent Heat Load Effect
,”
Finite Elem. Anal. Des.
,
44
(
14
), pp.
805
813
.10.1016/j.finel.2008.06.001
12.
Marck
,
G.
,
Nemer
,
M.
,
Harion
,
J. L.
,
Russeil
,
S.
, and
Bougeard
,
D.
,
2012
, “
Topology Optimization Using the SIMP Method for Multiobjective Problems
,”
Numer. Heat Transfer B
,
61
(
6
), pp.
439
470
.10.1080/10407790.2012.687979
13.
Bruns
,
T. E.
,
2007
, “
Topology Optimization of Convection-Dominated, Steady-State Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2859
2873
.10.1016/j.ijheatmasstransfer.2007.01.039
14.
Iga
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
,
2009
, “
Topology Optimization for Thermal Conductors Considering Design-Dependent Effects, Including Heat Conduction and Convection
,”
Int. J. Heat Mass Transfer
,
52
(
11–12
), pp.
2721
2732
.10.1016/j.ijheatmasstransfer.2008.12.013
15.
Yoon
,
G. H.
,
2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,”
J. Mech. Sci. Technol.
,
24
(
6
), pp.
1225
1233
.10.1007/s12206-010-0328-1
16.
Marck
,
G.
,
Nemer
,
M.
, and
Harion
,
J. L.
,
2013
, “
Topology Optimization of Heat and Mass Transfer Problems: Laminar Flow
,”
Numer. Heat Transfer B
,
63
(
6
), pp.
508
539
.10.1080/10407790.2013.772001
17.
Alexandersen
,
J.
,
Aage
,
N.
,
Andreasen
,
C. S.
, and
Sigmund
,
O.
,
2014
, “
Topology Optimisation for Natural Convection Problems
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
699
721
.10.1002/fld.3954
18.
Zhang
,
B.
,
Zhu
,
J.
,
Xiang
,
G.
, and
Gao
,
L.
,
2021
, “
Design of Nanofluid-Cooled Heat Sink Using Topology Optimization
,”
Chin. J. Aeronaut.
,
34
(
2
), pp.
301
317
.10.1016/j.cja.2020.05.023
19.
Yan
,
S. N.
,
Wang
,
F. W.
,
Hong
,
J.
, and
Sigmund
,
O.
,
2019
, “
Topology Optimization of Microchannel Heat Sinks Using a Two-Layer Model
,”
Int. J. Heat Mass Transfer
,
143
, p.
118462
.10.1016/j.ijheatmasstransfer.2019.118462
20.
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2016
, “
Large Scale Three-Dimensional Topology Optimisation of Heat Sinks Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
,
100
, pp.
876
891
.10.1016/j.ijheatmasstransfer.2016.05.013
21.
Alexandersen
,
J.
,
Sigmund
,
O.
,
Meyer
,
K. E.
, and
Lazarov
,
B. S.
,
2018
, “
Design of Passive Coolers for Light-Emitting Diode Lamps Using Topology Optimisation
,”
Int. J. Heat Mass Transfer
,
122
, pp.
138
149
.10.1016/j.ijheatmasstransfer.2018.01.103
22.
Lazarov
,
B. S.
,
Sigmund
,
O.
,
Meyer
,
K. E.
, and
Alexandersen
,
J.
,
2018
, “
Experimental Validation of Additively Manufactured Optimized Shapes for Passive Cooling
,”
Appl. Energy
,
226
, pp.
330
339
.10.1016/j.apenergy.2018.05.106
23.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.10.1115/1.4030989
24.
Sevart
,
C. D.
, and
Bergman
,
T. L.
,
2022
, “
Growth-Based Design of a Conducting Solid Cooled by Conjugate Gas Conduction and Surface Radiation
,”
ASME
Paper No. IMECE2022-95178.10.1115/IMECE2022-95178
25.
Sevart
,
C. D.
, and
Bergman
,
T. L.
,
2022
, “
A Dual Solid Method for Topological Optimization of a Conducting Solid Cooled by Gas Conduction and Surface Radiation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
10
), p.
102102
.10.1115/1.4054987
26.
Crosbie
,
A. L.
, and
Viskanta
,
R.
,
1968
, “
Transient Heating or Cooling of a Plate by Combined Convection and Radiation
,”
Int. J. Heat Mass Transfer
,
11
(
2
), pp.
305
317
.10.1016/0017-9310(68)90159-2
27.
Audunson
,
T.
, and
Gebhart
,
B.
,
1972
, “
An Experimental and Analytical Study of Natural Convection With Appreciable Thermal Radiation Effects
,”
J. Fluid Mech.
,
52
(
1
), pp.
57
95
.10.1017/S0022112072002976
28.
Carpenter
,
J. R.
,
Briggs
,
D. G.
, and
Sernas
,
V.
,
1976
, “
Combined Radiation and Developing Laminar Free Convection Between Vertical Flat Plates With Asymmetric Heating
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
98
(
1
), pp.
95
100
.10.1115/1.3450476
29.
Larson
,
D. W.
, and
Viskanta
,
R.
,
1976
, “
Transient Combined Laminar Free Convection and Radiation in a Rectangular Enclosure
,”
J. Fluid Mech.
,
78
(
1
), pp.
65
85
.10.1017/S0022112076002334
30.
Kim
,
D. M.
, and
Viskanta
,
R.
,
1984
, “
Effect of Wall Conduction and Radiation on Natural-Convection in a Rectangular Cavity
,”
Numer. Heat Transfer
,
7
(
4
), pp.
449
470
.10.1016/j.amc.2017.08.011
31.
Webb
,
B. W.
, and
Viskanta
,
R.
,
1987
, “
Radiation-Induced Buoyancy-Driven Flow in Rectangular Enclosures: Experiment and Analysis
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
109
(
2
), pp.
427
433
.10.1115/1.3248099
32.
Song
,
B.
, and
Viskanta
,
R.
,
1990
, “
Deicing of Solids Using Radiant Heating
,”
J. Thermophys. Heat Transfer
,
4
(
3
), pp.
311
317
.10.2514/3.182
33.
Fernandes
,
N. J.
,
Bergman
,
T. L.
, and
Masada
,
G. Y.
,
1992
, “
Thermal Effects During Infrared Solder Reflow – Part I: Heat Transfer Mechanisms
,”
ASME J. Electron Packag.
,
114
(
1
), pp.
41
47
.10.1115/1.2905440
34.
Viskanta
,
R.
, and
Bergman
,
T. L.
,
1998
, “
Heat Transfer in Materials Processing
,”
Handbook of Heat Transfer
, 3rd ed.,
W. M.
Rohsenow
,
J. P.
Hartnett
, and
Y. I.
Cho
, eds.,
McGraw-Hill Book Co
.,
New York
, pp.
18.1
18.74
.
35.
Viskanta
,
R.
,
2008
, “
Overview of Some Radiative Transfer Issues in Simulation of Unwanted Fires
,”
Int. J. Therm. Sci.
,
47
(
12
), pp.
1563
1570
.10.1016/j.ijthermalsci.2008.01.008
36.
Tseng
,
C. C.
,
Sikorski
,
R. L.
,
Viskanta
,
R.
, and
Chen
,
M. Y.
,
2012
, “
Effect of Foam Properties on Heat Transfer in High Temperature Open-Cell Foam Inserts
,”
J. Am. Ceram. Soc.
,
95
(
6
), pp.
2015
2021
.10.1111/j.1551-2916.2012.05177.x
37.
Hall
,
D. A.
,
Vliet
,
G. C.
, and
Bergman
,
T. L.
,
1999
, “
Natural Convection Cooling of Vertical Rectangular Channels in Air Considering Radiation and Wall Conduction
,”
ASME J. Electron Packag.
,
121
(
2
), pp.
75
84
.10.1115/1.2792671
38.
Jang
,
D.
,
Yu
,
S. H.
, and
Lee
,
K. S.
,
2012
, “
Multidisciplinary Optimization of a Pin-Fin Radial Heat Sink for LED Lighting Applications
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
515
521
.10.1016/j.ijheatmasstransfer.2011.11.016
39.
Kwak
,
D. B.
,
Kwak
,
H. P.
,
Noh
,
J. H.
, and
Yook
,
S. J.
,
2018
, “
Optimization of the Radial Heat Sink With a Concentric Cylinder and Triangular Fins Installed on a Circular Base
,”
J. Mech. Sci. Technol.
,
32
(
1
), pp.
505
512
.10.1007/s12206-017-1252-4
40.
Huang
,
C. H.
, and
Wu
,
Y. T.
,
2021
, “
An Optimum Design for a Natural Convection Pin Fin Array With Orientation Consideration
,”
Appl. Therm. Eng.
,
188
, p.
116633
.10.1016/j.applthermaleng.2021.116633
41.
Czerwiński
,
G.
, and
Wołoszyn
,
J.
,
2021
, “
Optimization of Air Cooling System Using Adjoint Solver Technique
,”
Energies
,
14
(
13
), p.
3753
.10.3390/en14133753
42.
Howell
,
J. R.
,
Daun
,
K. J.
,
Erturk
,
H.
,
Gamba
,
M.
, and
Sarvari
,
M. H.
,
2003
, “
The Use of Inverse Methods for the Design and Control of Radiant Sources
,”
JSME Int. J. Ser. B
,
46
(
4
), pp.
470
478
.10.1299/jsmeb.46.470
43.
Daun
,
K. J.
,
Morton
,
D. P.
, and
Howell
,
J. R.
,
2003
, “
Geometric Optimization of Radiant Enclosures Containing Specular Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
125
(
5
), pp.
845
851
.10.1115/1.1599369
44.
Tan
,
J. Y.
,
Zhao
,
J. M.
, and
Liu
,
L. H.
,
2011
, “
Geometric Optimization of a Radiation-Conduction Heating Device Using Meshless Method
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1820
1831
.10.1016/j.ijthermalsci.2011.05.009
45.
Farahmand
,
A.
,
Payan
,
S.
, and
Hosseini Sarvari
,
S. M.
,
2012
, “
Geometric Optimization of Radiative Enclosures Using PSO Algorithm
,”
Int. J. Therm. Sci.
,
60
, pp.
61
69
.10.1016/j.ijthermalsci.2012.04.024
46.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2013
, “
Solution of Radiative Inverse Boundary Design Problem in a Combined Radiating-Free Convecting Furnace
,”
Int. Commun. Heat Mass Transfer
,
45
, pp.
130
136
.10.1016/j.icheatmasstransfer.2013.04.011
47.
Mosavati
,
B.
,
Mosavati
,
M.
, and
Kowsary
,
F.
,
2016
, “
Inverse Boundary Design Solution in a Combined Radiating-Free Convection Furnace Filled With Participating Medium Containing Specularly Reflecting Walls
,”
Int. Commun. Heat Mass Transfer
,
76
, pp.
69
76
.10.1016/j.icheatmasstransfer.2016.04.029
48.
Mosavati
,
B.
, and
Mosavati
,
M.
,
2022
, “
A New Approach to Solve Inverse Boundary Design of a Radiative Enclosure With Specular-Diffuse Surfaces
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
144
(
1
), p.
012801
.10.1115/1.4052606
49.
Castro
,
D. A.
,
Kiyono
,
C. Y.
, and
Silva
,
E. C. N.
,
2015
, “
Design of Radiative Enclosures by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
88
, pp.
880
890
.10.1016/j.ijheatmasstransfer.2015.04.077
50.
Wang
,
C.
,
Yu
,
Z.
,
Zhou
,
M.
, and
Qian
,
X.
,
2022
, “
Topology Optimization of Thermophotonic Problem for Daytime Passive Radiative Cooling
,”
Int. J. Heat Mass Transfer
,
183
, p.
122097
.10.1016/j.ijheatmasstransfer.2021.122097
51.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
52.
Sevart
,
C. D.
, and
Bergman
,
T. L.
,
2021
, “
Evolutionary Design Method for a Conducting Solid Cooled by Combined Free Convection and Radiation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
4
), p.
042103
.10.1115/1.4049841
53.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes – a New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
.10.1002/nme.1620240207
54.
Wen
,
C. D.
, and
Mudawar
,
I.
,
2006
, “
Modeling the Effects of Surface Roughness on Emissivity of Aluminum
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4279
4289
.10.1016/j.ijheatmasstransfer.2006.04.037
55.
Kandis
,
M.
, and
Bergman
,
T. L.
,
2000
, “
A Simulation-Based Correlation of the Density and Thermal Conductivity of Objects Produced by Laser Sintering of Polymer Powders
,”
ASME J. Manuf. Sci. Eng.
,
122
(
3
), pp.
439
444
.10.1115/1.1286558
56.
Yang
,
P.
,
Deibler
,
L. A.
,
Bradley
,
D. R.
,
Stefan
,
D. K.
, and
Carrol
,
J. D.
,
2018
, “
Microstructure Evolution and Thermal Properties of an Additively Manufactured, Solution Treatable AlSi10 Mg Part
,”
J. Mater. Res.
,
33
(
23
), pp.
4040
4052
.10.1557/jmr.2018.405
57.
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2017
,
Fundamentals of Heat and Mass Transfer
, 8th ed.,
Wiley
,
Hoboken, NJ
.
58.
Howell
,
J. R.
,
Mengüç
,
M. P.
, and
Siegel
,
R.
,
2016
,
Thermal Radiation Heat Transfer
, 6th ed.,
CRC Press
,
Boca Raton
.
You do not currently have access to this content.