Abstract

In this work, we experimentally investigated the deterioration and instability of heat transfer to H2O/CO2 mixtures in the near-critical region, following our series of works on their normal and enhanced heat transfer, hydraulic resistance, and thermophysical properties. The experimental pressure is 24 MPa, temperatures are 330–400 °C, CO2 mass fractions are 9.8 and 15.0%, mass fluxes are above 940 kg/m2/s, heat fluxes are below 211 kW/m2, and flow is horizontal. Experiments show that the heat transfer deterioration for the supercritical H2O/CO2 mixture occurs when the fluid temperature is lower than the pseudo-critical temperature (Tpc) and the wall temperature is higher than Tpc, similar to the condition for supercritical pure fluids, but the onset heat flux is much lower. Results also show that the heat transfer instability for the supercritical H2O/CO2 mixture occurs not only moderately near Tpc (similar to supercritical pure fluids) but also more significantly near the critical miscible temperature. All of these distinct phenomena were attributed to the mixture feature.

References

1.
Song
,
C.
,
Luo
,
K.
,
Jin
,
T.
,
Wang
,
H.
, and
Fan
,
J.
,
2019
, “
Direct Numerical Simulation on Auto-Ignition Characteristics of Turbulent Supercritical Hydrothermal Flames
,”
Combust. Flame
,
200
, pp.
354
364
.10.1016/j.combustflame.2018.12.002
2.
Cheng
,
S.
,
Shang
,
F.
,
Ma
,
W.
,
Jin
,
H.
,
Sakoda
,
N.
,
Zhang
,
X.
, and
Guo
,
L.
,
2019
, “
Density Measurements of the H2−CO2−CH4−CO−H2O System by the Isochoric Method at 722 − 930 K and 15.4 − 30.3 MPa
,”
J. Chem. Eng. Data
,
64
(
9
), pp.
4024
4036
.10.1021/acs.jced.9b00399
3.
Chen
,
L.
,
Liu
,
D.
, and
Li
,
Q.
,
2022
, “
CO2 Diffusivity in H2O for Supercritical Conditions: A Molecular Dynamics Study
,”
J. Therm. Sci.
,
31
(
5
), pp.
1407
1415
.10.1007/s11630-022-1525-9
4.
Vladimir
,
L.
,
German
,
M.
,
Alexander
,
T.
, and
Viskanta
,
R.
,
2014
, “
Simple Expression for the Emittance of H2O-CO2 Mixtures in Zonal Methods of Radiation Transfer Modeling
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
9
), p.
094501
.10.1115/1.4027689
5.
Guo
,
L.
, and
Jin
,
H.
,
2013
, “
Boiling Coal in Water: Hydrogen Production and Power Generation System With Zero Net CO2 Emission Based on Coal and Supercritical Water Gasification
,”
Int. J. Hydrog. Energy
,
38
(
29
), pp.
12953
12967
.10.1016/j.ijhydene.2013.04.089
6.
Chen
,
L.
,
Liu
,
D.
,
Zhang
,
H.
, and
Li
,
Q.
,
2020
, “
Theoretical Investigations on Heat Transfer to H2O/CO2 Mixtures in Supercritical Region
,”
Sci. China Technol. Sci.
,
63
(
6
), pp.
1018
1024
.10.1007/s11431-019-1515-3
7.
Zhang
,
H.
,
Wu
,
H.
,
Li
,
S.
,
Liu
,
D.
, and
Li
,
Q.
, “
Isobaric Heat Capacity and Density of Supercritical H2O/CO2 Mixtures: Measurements in a Multi-Function Apparatus
,” ASME J. Heat Transfer-Trans. ASME (submitted).
8.
Zhang
,
H.
,
Liu
,
D.
, and
Li
,
Q.
,
2022
, “
Measurements and Correlation of Hydraulic Resistance for H2O/CO2 Mixtures at Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
194
, p.
123095
.10.1016/j.ijheatmasstransfer.2022.123095
9.
Zhang
,
H.
,
Wu
,
H.
,
Liu
,
D.
,
Li
,
S.
, and
Li
,
Q.
,
2020
, “
Experimental Investigations on Heat Transfer to H2O/CO2 Mixtures in Supercritical Region
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104706
.10.1016/j.icheatmasstransfer.2020.104706
10.
Zhang
,
H.
,
Wu
,
H. L. S.
,
Liu
,
D.
, and
Li
,
Q.
,
2021
, “
Anomalous Enhancement of Heat Transfer to H2O/CO2 Mixtures in Near-Critical Region
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
2
), p.
024501
.10.1115/1.4048826
11.
Wang
,
Q.
,
Ma
,
X.
,
Xu
,
J.
,
Li
,
M.
, and
Yan
,
W.
,
2021
, “
The Three-Regime-Model for Pseudo-Boiling in Supercritical Pressure
,”
Int. J. Heat Mass Transfer
,
181
, p.
121875
.10.1016/j.ijheatmasstransfer.2021.121875
12.
Zhang
,
H.
,
Xu
,
J.
,
Zhu
,
X.
,
Xie
,
J.
,
Li
,
M.
, and
Zhu
,
B.
,
2021
, “
The K Number, a New Analogy Criterion Number to Connect Pressure Drop and Heat Transfer of sCO2 in Vertical Tubes
,”
Appl. Therm. Eng.
,
182
, p.
116078
.10.1016/j.applthermaleng.2020.116078
13.
Zhang
,
Z.
,
Zhao
,
C.
,
Yang
,
X.
,
Jiang
,
P.
,
Jiang
,
S.
, and
Tu
,
J.
,
2019
, “
Influences of Tube Wall on the Heat Transfer and Flow Instability of Various Supercritical Pressure Fluids in a Vertical Tube
,”
Appl. Therm. Eng.
,
147
, pp.
242
250
.10.1016/j.applthermaleng.2018.10.024
14.
Liang
,
Z.
,
Xin
,
Y.
,
Li
,
Y.
,
Niu
,
T.
, and
Yang
,
D.
,
2021
, “
Experimental Study on Flow Instability and Oscillatory Heat Transfer Characteristics of Ultra-Supercritical Water in Parallel Channels
,”
Int. J. Heat Mass Transfer
,
166
, p.
120754
.10.1016/j.ijheatmasstransfer.2020.120754
15.
Li
,
Z.
,
Wu
,
Y.
,
Lu
,
J.
,
Zhang
,
D.
, and
Zhang
,
H.
,
2014
, “
Heat Transfer to Supercritical Water in Circular Tubes With Circumferentially Non-Uniform Heating
,”
Appl. Therm. Eng.
,
70
(
1
), pp.
190
200
.10.1016/j.applthermaleng.2014.05.013
16.
Lei
,
X.
,
Li
,
H.
,
Dinh
,
N.
, and
Zhang
,
W.
,
2017
, “
A Study of Heat Transfer Scaling of Supercritical Pressure Water in Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
114
, pp.
923
933
.10.1016/j.ijheatmasstransfer.2017.06.052
17.
Lei
,
X.
,
Li
,
H.
,
Zhang
,
Y.
, and
Zhang
,
W.
,
2013
, “
Effect of Buoyancy on the Mechanism of Heat Transfer Deterioration of Supercritical Water in Horizontal Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(7), p.
071703
.10.1115/1.4023747
18.
Xie
,
J.
,
Liu
,
D.
,
Yan
,
H.
,
Xie
,
G.
, and
Boetcher
,
S. K. S.
,
2020
, “
A Review of Heat Transfer Deterioration of Supercritical Carbon Dioxide Flowing in Vertical Tubes: Heat Transfer Behaviors, Identification Methods, Critical Heat Fluxes, and Heat Transfer Correlations
,”
Int. J. Heat Mass Transfer
,
149
, p.
119233
.10.1016/j.ijheatmasstransfer.2019.119233
19.
Mao
,
S.
,
Zhou
,
T.
,
Wei
,
D.
,
Liu
,
W.
, and
Zhang
,
Y.
,
2021
, “
Heat Transfer Characteristics of Supercritical Water in Channels: A Systematic Literature Review of 20 Years of Research
,”
Appl. Therm. Eng.
,
197
, p.
117403
.10.1016/j.applthermaleng.2021.117403
20.
Pizzarelli
,
M.
,
2018
, “
The Status of the Research on the Heat Transfer Deterioration in Supercritical Fluids: A Review
,”
Int. Commun. Heat Mass Transfer
,
95
, pp.
132
138
.10.1016/j.icheatmasstransfer.2018.04.006
21.
Koshizuka
,
S.
,
Takano
,
N.
, and
Oka
,
Y.
,
1995
, “
Numerical Analysis of Deterioration Phenomena in Heat Transfer to Supercritical Water
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3077
3084
.10.1016/0017-9310(95)00008-W
22.
Cai
,
D.
,
Xu
,
X.
,
Zhang
,
S.
,
Liu
,
C.
, and
Dang
,
C.
,
2021
, “
Experimental Investigation on the Flow Instability of Supercritical CO2 in Vertical Upward Circular Tube in Trans-Critical CO2 Rankine System
,”
Appl. Therm. Eng.
,
183
, p.
116139
.10.1016/j.applthermaleng.2020.116139
23.
Yan
,
J.
,
Zhu
,
Y.
,
Zhao
,
R.
,
Yan
,
S.
, and
Jiang
,
P.
,
2018
, “
Experimental Investigation of the Flow and Heat Transfer Instabilities in n-Decane at Supercritical Pressures in a Vertical Tube
,”
Int. J. Heat Mass Transfer
,
120
, pp.
987
996
.10.1016/j.ijheatmasstransfer.2017.12.057
24.
Zhou
,
W.
,
Yu
,
B.
,
Qin
,
J.
, and
Yu
,
D.
,
2014
, “
Mechanism and Influencing Factors Analysis of Flowing Instability of Supercritical Endothermic Hydrocarbon Fuel Within a Small-Scale Channel
,”
Appl. Therm. Eng.
,
71
(
1
), pp.
34
42
.10.1016/j.applthermaleng.2014.06.002
25.
Rogak
,
S. N.
, and
Faraji
,
D.
,
2004
, “
Heat Transfer to Water-Oxygen Mixtures at Supercritical Pressure
,”
ASME J. Heat Transfer-Trans. ASME
,
126
(
3
), pp.
419
424
.10.1115/1.1731329
26.
Lei
,
X.
,
Li
,
H.
,
Zhang
,
W.
,
Dinh
,
N. T.
,
Guo
,
Y.
, and
Yu
,
S.
,
2017
, “
Experimental Study on the Difference of Heat Transfer Characteristics Between Vertical and Horizontal Flows of Supercritical Pressure Water
,”
Appl. Therm. Eng.
,
113
, pp.
609
620
.10.1016/j.applthermaleng.2016.11.051
27.
Li
,
Z.
,
Wu
,
Y.
,
Tang
,
G.
,
Zhang
,
D.
, and
Lu
,
J.
,
2015
, “
Comparison Between Heat Transfer to Supercritical Water in a Smooth Tube and in an Internally Ribbed Tube
,”
Int. J. Heat Mass Transfer
,
84
, pp.
529
541
.10.1016/j.ijheatmasstransfer.2015.01.047
28.
Deng
,
H.
,
Zhu
,
K.
,
Xu
,
G.
,
Tao
,
Z.
,
Zhang
,
C.
, and
Liu
,
G.
,
2012
, “
Isobaric Specific Heat Capacity Measurement for Kerosene RP-3 in the Near-Critical and Supercritical Regions
,”
J. Chem. Eng. Data
,
57
(
2
), pp.
263
268
.10.1021/je200523a
29.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
,
264
, pp.
24
40
.10.1016/j.nucengdes.2012.09.040
30.
Mokry
,
S.
,
Pioro
,
I.
,
Farah
,
A.
,
King
,
K.
,
Gupta
,
S.
,
Peiman
,
W.
, and
Kirillov
,
P.
,
2011
, “
Development of Supercritical Water Heat-Transfer Correlation for Vertical Bare Tubes
,”
Nucl. Eng. Des.
,
241
(
4
), pp.
1126
1136
.10.1016/j.nucengdes.2010.06.012
31.
Yu
,
S.
,
Li
,
H.
,
Lei
,
X.
,
Feng
,
Y.
,
Zhang
,
Y.
,
He
,
H.
, and
Wang
,
T.
,
2013
, “
Experimental Investigation on Heat Transfer Characteristics of Supercritical Pressure Water in a Horizontal Tube
,”
Exp. Therm. Fluid Sci.
,
50
, pp.
213
221
.10.1016/j.expthermflusci.2013.06.011
32.
Zhang
,
B.
,
Shan
,
J.
, and
Jiang
,
J.
,
2010
, “
Numerical Analysis of Supercritical Water Heat Transfer in Horizontal Circular Tube
,”
Prog. Nucl. Energy
,
52
(
7
), pp.
678
684
.10.1016/j.pnucene.2010.03.006
33.
Li
,
S.
,
Wang
,
Y.
,
Dong
,
M.
,
Pu
,
H.
,
Jiao
,
S.
, and
Shang
,
Y.
,
2019
, “
Experimental Investigation on Flow and Heat Transfer Instabilities of RP-3 Aviation Kerosene in a Vertical Miniature Tube Under Supercritical Pressures
,”
Appl. Therm. Eng.
,
149
, pp.
73
84
.10.1016/j.applthermaleng.2018.11.002
34.
Vladimirova
,
N.
,
Malagoli
,
A.
, and
Mauri
,
R.
,
1999
, “
Diffusiophoresis of Two-Dimensional Liquid Droplets in Phase Separating System
,”
Phys. Rev. E
,
60
(
2
), pp.
2037
2044
.10.1103/PhysRevE.60.2037
35.
Ullmann
,
A.
,
Gat
,
S.
,
Ludmer
,
Z.
, and
Brauner
,
N.
,
2008
, “
Phase Separation of Partially Miscible Solvent Systems: Flow Phenomena and Heat and Mass Transfer Applications
,”
Rev. Chem. Eng.
,
24
, pp.
159
262
.10.1515/REVCE.2008.24.4-5.159
You do not currently have access to this content.