Abstract

Four probes for measuring thermal conductivity, thermal diffusivity, and convection heat transfer coefficient were designed, built, and tested. In two of these probes (SP-1 and SP-2), three thermocouples were placed at 25%, 50%, and 75% of the total length of 150 mm, while the third probe (SP-3) has the three thermocouples at 10%, 50%, and 90%. The fourth probe (DP-1) is a dual-probe, to measure thermal diffusivity using the pulse method. First results show good performance of the devices when measuring a reference material (glycerol). In fact, an accuracy of about ±5% was achieved in both thermal conductivity and thermal diffusivity measurements. The size of the probes (length 150 mm, diameter 2 mm) makes them particularly suitable for measuring the thermophysical properties of bulk materials, such as soils, composites, buildings walls, etc. Thanks to the presence of three thermocouples, convection can be studied so that also the boundary layer can also be evaluated.

References

1.
Coppa
,
P.
, and
Pasquali
,
G.
,
2002
, “
Thermal Conductivity of Lipidic Emulsions and Its Use for Production and Quality Control
,”
Proceedings of the 2nd International Symposium on Instrumentation Science and Technology ISIST
, Jinan, China, Aug. 10–12, Vol.
1
, pp.
486
495
.https://art.torvergata.it/retrieve/handle/2108/65730/116973/art_coppa.pdf
2.
Bovesecchi
,
G.
, and
Coppa
,
P.
,
2013
, “
Basic Problems in Thermal-Conductivity Measurements of Soils
,”
Int. J. Thermophys.
,
34
(
10
), pp.
1962
1974
.10.1007/s10765-013-1503-2
3.
Bovesecchi
,
G.
,
Coppa
,
P.
, and
Pistacchio
,
S.
,
2018
, “
A New Thermal Conductivity Probe for High Temperature Tests for the Characterization of Molten Salts
,”
Rev. Sci. Instrum.
,
89
(
5
), p.
055107
.10.1063/1.5019776
4.
Wechsler
,
A. E.
,
1992
, “
The Probe Method for Measurement of Thermal Conductivity
,”
Compendium of Thermophysical Property Measurement Methods
, K. D. Maglić, A. Cezairliyan,
and V. E.
Peletsky
, eds.,
Springer
,
Boston, MA
, pp.
161
185
.10.1007/978-1-4615-3286-6_6
5.
Gori
,
F.
, and
Corasaniti
,
S.
,
2003
, “
Experimental Measurements and Theoretical Prediction of the Thermal Conductivity of Two- and Three-Phase Water/Olivine Systems
,”
Int. J. Thermophys.
,
24
(
5
), pp.
1339
1353
.10.1023/A:1026107319415
6.
Corasaniti
,
S.
, and
Gori
,
F.
,
2017
, “
Heat Conduction in Two and Three-Phase Media With Solid Spherical Particles of the Same Diameter
,”
Int. J. Therm. Sci.
,
112
, pp.
460
469
.10.1016/j.ijthermalsci.2016.10.022
7.
Corasaniti
,
S.
, and
Gori
,
F.
,
2017
, “
Natural Convection Around a Vertical Cylinder (Thermal Probe) Immersed in a Porous Medium
,”
Int. Commun. Heat Mass Transfer
,
81
, pp.
72
78
.10.1016/j.icheatmasstransfer.2016.12.006
8.
Corasaniti
,
S.
,
Bovesecchi
,
G.
, and
Gori
,
F.
,
2021
, “
Experimental Thermal Conductivity of Alumina Nanoparticles in Water With and Without Sonication
,”
Int. J. Thermophys.
,
42
(
2
), p.
23
.10.1007/s10765-020-02771-z
9.
Hukseflux Thermal Sensors
, 2022, “
Small Size Non-Steady-State Probe for Thermal Conductivity Measurement
,” Delftechpark, The Netherlands, accessed Nov. 14,
2022
, https://www.hukseflux.com/products/thermal-conductivity-sensors/thermal-properties-sensors/tp08-thermal-properties-sensor
10.
BD Inventions
,
2022
, “Drive Innovation and Creative Pursuit of Superior Performance,” Thessaloniki, Greece, accessed Nov. 14, 2022, https://www.bd-inventions.com/product/tls-100
11.
ASTM
,
2014
, “Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure,”
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM D5334-14. https://webstore.ansi.org/Standards/ASTM/ASTMD533414
12.
Bovesecchi
,
G.
,
Coppa
,
P.
,
Corasaniti
,
S.
, and
Potenza
,
M.
,
2018
, “
Critical Analysis of Dual-Probe Heat-Pulse Technique Applied to Measuring Thermal Diffusivity
,”
Int. J. Thermophys.
,
39
(
7
), p.
82
.10.1007/s10765-018-2402-3
13.
Potenza
,
M.
,
Coppa
,
P.
,
Corasaniti
,
S.
, and
Bovesecchi
,
G.
,
2021
, “
Numerical Simulation of Thermal Diffusivity Measurements With the Laser-Flash Method to Evaluate the Effective Property of Composite Materials
,”
ASME J. Heat Transfer-Trans. ASME
,
143
(
7
), p.
072102
.10.1115/1.4050995
14.
Bellucci
,
S.
,
Bovesecchi
,
G.
,
Cataldo
,
A.
,
Coppa
,
P.
,
Corasaniti
,
S.
, and
Potenza
,
M.
,
2019
, “
Transmittance and Reflectance Effects During Thermal Diffusivity Measurements of GNP Samples With the Flash Method
,”
Materials
,
12
(
5
), pp.
696
712
.10.3390/ma12050696
15.
Eckert
,
E. R. G.
, and
Drake
,
R. M.
,
1959
,
Heat and Mass Transfer
,
McGraw-Hill
,
New York
.
16.
Vargaftik
,
N. B.
,
Filippov
,
L. P.
,
Tarzimanov
,
A. A.
, and
Totskii
,
E. E.
,
1994
,
Handbook of Thermal Conductivity of Liquids and Gases
,
CRC Press
,
Boca Raton, FL
.
17.
Leinhard
,
J. H.
, IV
, and
Leinhard
,
J. H.
, V
,
2020
,
A Heat Transfer Textbook
,
Phlogiston Press US
,
Cambridge, MA
.
18.
Le Fevre
,
E. J.
, and
Ede
,
A. J.
,
1956
, “
Laminar Free Convection From the Outer Surface of a Vertical Circular Cylinder
,”
Proceedings of 9
th
International Congress on Applied Mechanics
, Brussels, Belgium, Sept. 5–13, Vol.
4
, pp.
175
183
.
19.
ISO
,
2008
, “
Uncertainty of Measurement—Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995)
,” Geneva, Switzerland, Standard No.
ISO-IEC 98-3:2008
.https://www.iso.org/standard/50461.html
20.
Brandt
,
S.
,
2014
,
Data Analysis: Statistical and Computational Methods for Scientists and Engineers
,
Springer Verlag, Cham
,
Switzerland
.10.1007/978-3-319-03762-2
You do not currently have access to this content.