Abstract

Hybrid fuel cells are becoming increasingly popular in 21st century energy systems engineering. These systems combine multiple features including various geometries, electromagnetic fluids, bacteria (micro-organisms), thermosolutal convection, and porous media. Motivated by these developments in the present work, we simulate the two-dimensional magnetohydrodynamic (MHD) natural triple convection flow in a semitrapezoidal enclosure saturated with electrically conducting water containing oxytactic micro-organisms and oxygen species. The Darcy–Brinkman model is deployed for porous media drag effects. The primitive governing partial differential conservation equations for mass, momentum, energy, oxygen species, and motile micro-organism species density are transformed using a vorticity–stream function formulation and nondimensional variables into a nonlinear boundary value problem. A numerical solution is obtained using a finite difference method with incremental time steps. The mathematical model features a number of controlling parameters, i.e., Prandtl number, Rayleigh number, bioconvective Rayleigh number, Darcy parameter, Hartmann (magnetic body force) number, Lewis number, Péclet number, oxygen diffusion ratio, and fraction of consumption oxygen to diffusion of oxygen parameter. Transport characteristics (streamlines, isotherms, oxygen isoconcentration, and motile micro-organism concentration) are computed for several of these parameters. Micro-organisms’ impact on the rate of heat transfer at the boundaries is found to be beneficial or destructive, depending on combination of other parameters in the simulations. Additionally, Nusselt number and oxygen species Sherwood number are computed at the hot vertical wall. The simulations are relevant to hybrid electromagnetic microbial fuel cells.

References

1.
Geng
,
P.
, and
Kuznetsov
,
A. V.
,
2004
, “
Effect of Small Solid Particles on the Development of Bioconvection Plumes
,”
Int. Commun. Heat Mass Transfer
,
31
(
5
), pp.
629
638
.10.1016/S0735-1933(04)00050-8
2.
Kuznetsov
,
A. V.
,
2008
, “
New Developments in Bioconvection in Porous Media: Bioconvection Plumes, Bio-Thermal Convection, and Effects of Vertical Vibration
,”
Emerging Topics in Heat and Mass Transfer in Porous Media
,
P.
Vadasz
, ed.,
Springer Science Business Media B.V
., Hongkong.
3.
Kessler
,
J. O.
,
1986
, “
The External Dynamics of Swimming Micro-Organisms
,”
Prog. Phycol. Res.
,
4
, pp.
258
307
.
4.
Stephenson
,
A. L.
,
Kazamia
,
E.
,
Dennis
,
J. S.
,
Howe
,
C. J.
,
Scott
,
S. A.
, and
Smith
,
A. G.
,
2010
, “
Life-Cycle Assessment of Potential Algal Biodiesel Production in the United Kingdom: A Comparison of Raceways and Air-Lift Tubular Bioreactors
,”
Energy Fuels
,
24
(
7
), pp.
4062
4077
.10.1021/ef1003123
5.
Scott
,
S. A.
,
Davey
,
M. P.
,
Dennis
,
J. S.
,
Horst
,
I.
,
Howe
,
C. J.
,
Lea-Smith
,
D. J.
, and
Smith
,
A. G.
,
2010
, “
Biodiesel From Algae: Challenges and Prospects
,”
Curr. Opin. Biotechnol.
,
21
(
3
), pp.
277
286
.10.1016/j.copbio.2010.03.005
6.
Shamshuddin
,
M.
,
Mishra
,
S. R.
,
Kadir
,
A.
, and
Bég
,
O. A.
,
2019
, “
Unsteady Chemo-Tribological Squeezing Flow of Magnetized Bioconvection Lubricants: Numerical Study
,”
J. Nanofluids
,
8
(
2
), pp.
407
419
.10.1166/jon.2019.1587
7.
Acharya
,
N.
,
Bag
,
R.
, and
Kundu
,
P. K.
,
2021
, “
Unsteady Bioconvective Squeezing Flow With Higher-Order Chemical Reaction and Second-Order Slip Effects
,”
Heat Transfer
,
50
(
6
), pp.
5538
5562
.10.1002/htj.22137
8.
Nima
,
N. I.
,
Ferdows
,
M.
,
Anwar Bég
,
O.
,
Kuharat
,
S.
, and
Alzahrani
,
F.
,
2020
, “
Biomathematical Model for Gyrotactic Free-Forced Bioconvection With Oxygen Diffusion in Near-Wall Transport Within a Porous Medium Fuel Cell
,”
Int. J. Biomath.
,
13
(
4
), p.
2050026
.10.1142/S1793524520500266
9.
Zhang
,
J.
, ed.,
2008
,
PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications
,
Springer Science & Business Media
, London, UK.
10.
Balan
,
B.
,
Dhaulaniya
,
A. S.
,
Varma
,
D. A.
,
Sodhi
,
K. K.
,
Kumar
,
M.
,
Tiwari
,
M.
, and
Singh
,
D. K.
,
2021
, “
Microbial Biofilm Ecology, In Silico Study of Quorum Sensing Receptor-Ligand Interactions and Biofilm Mediated Bioremediation
,”
Arch. Microbiol.
,
203
(
1
), pp.
13
30
.10.1007/s00203-020-02012-9
11.
Ettwig
,
K. F.
,
Butler
,
M. K.
,
Le Paslier
,
D.
,
Pelletier
,
E.
,
Mangenot
,
S.
,
Kuypers
,
M. M. M.
, and
Schreiber
,
F.
, et al.,
2010
, “
Nitrite-Driven Anaerobic Methane Oxidation by Oxygenic Bacteria
,”
Nature
,
464
(
7288
), pp.
543
548
.10.1038/nature08883
12.
Ettwig
,
K. F.
,
Speth
,
D. R.
,
Reimann
,
J.
,
Wu
,
M. L.
,
Jetten
,
M. S.
, and
Keltjens
,
J. T.
,
2012
, “
Bacterial Oxygen Production in the Dark
,”
Front. Microbiol.
,
3
, p.
273
.10.3389/fmicb.2012.00273
13.
Hulsen
,
T.
,
Hsieh
,
K.
,
Lu
,
Y.
,
Tait
,
S.
, and
Batstone
,
D. J.
,
2018
, “
Simultaneous Treatment and Single Cell Protein Production From Agri-Industrial Wastewaters Using Purple Phototrophic Bacteria or Microalgaeea Comparison
,”
Bioresour. Technol.
,
254
, pp.
214
223
.10.1016/j.biortech.2018.01.032
14.
Islam
,
M. S.
,
Akter
,
R.
,
Rahman
,
M. M.
, and
Kurasaki
,
M.
,
2022
, “
Phytoremediation: Background, Principle, and Application, Plant Species Used for Phytoremediation
,”
Design of Materials and Technologies for Environmental Remediation
,
S.
Tanaka
,
M.
Kurasaki
,
M.
Morikawa
, and
Y.
Kamiya
, eds.,
Springer
, Singapore.
15.
Yuan
,
H.
,
Hou
,
Y.
,
Abu-Reesh
,
I. M.
,
Chen
,
J.
, and
He
,
Z.
,
2016
, “
Oxygen Reduction Reaction Catalysts Used in Microbial Fuel Cells for Energy-Efficient Wastewater Treatment: A Review
,”
Mater. Horiz.
,
3
(
5
), pp.
382
401
.10.1039/C6MH00093B
16.
Kim
,
D.-S.
, and
Fogler
,
H. S.
,
2000
, “
Biomass Evolution in Porous Media and Its Effects on Permeability Under Starvation Conditions
,”
Biotechnol. Bioeng.
,
69
(
1
), pp.
47
56
.10.1002/(SICI)1097-0290(20000705)69:1<47::AID-BIT6>3.0.CO;2-N
17.
Chi
,
F. J.
, Sie, C.-Y., Wan, T.-J., Liu, S.-H., Pai, T.-Y., and Kao, P.-M.,
2021
, “
Effects of Magnetic Fields on Electricity Generation in a Photosynthetic Ceramic Microbial Fuel Cell
,”
Int. J. Hydrogen Energy
,
46
, pp.
11411
11418
.10.1016/j.ijhydene.2020.08.167
18.
Katz
,
E.
,
Lioubashevski
,
O.
, and
Willner
,
I.
,
2005
, “
Magnetic Field Effects on Bioelectrocatalytic Reactions of Surface-Confined Enzyme Systems: Enhanced Performance of Biofuel Cells
,”
J. Am. Chem. Soc.
,
127
(
11
), pp.
3979
3988
.10.1021/ja044157t
19.
Okada
,
T.
,
Wakayama
,
N. I.
,
Wang
,
L.
,
Shingu
,
H.
,
Okano
,
J.-I.
, and
Ozawa
,
T.
,
2003
, “
The Effect of Magnetic Field on the Oxygen Reduction Reaction and Its Application in Polymer Electrolyte Fuel Cells
,”
Electrochim. Acta
,
48
(
5
), pp.
531
539
.10.1016/S0013-4686(02)00720-X
20.
Zhou
,
H.
,
Mei
,
X.
,
Liu
,
B.
,
Xie
,
G.
, and
Xing
,
D.
,
2019
, “
Magnet Anode Enhances Extracellular Electron Transfer and Enrichment of Exo-Electrogenic Bacteria in Bio-Electrochemical Systems
,”
Biotechnol. Biofuels
,
12
(
1
), p.
133
.10.1186/s13068-019-1477-9
21.
Li
,
W.-W.
,
Sheng
,
G.-P.
,
Liu
,
X.-W.
,
Cai
,
P.-J.
,
Sun
,
M.
,
Xiao
,
X.
,
Wang
,
Y.-K.
,
Tong
,
Z.-H.
,
Dong
,
F.
, and
Yu
,
H.-Q.
,
2011
, “
Impact of a Static Magnetic Field on the Electricity Production of Shewanella-Inoculated Microbial Fuel Cells
,”
Biosens. Bioelectron.
,
26
(
10
), pp.
3987
3992
.10.1016/j.bios.2010.11.027
22.
Tong
,
Z.-H.
,
Yu
,
H.-Q.
,
Li
,
W.-W.
,
Wang
,
Y.-K.
,
Sun
,
M.
,
Liu
,
X.-W.
, and
Sheng
,
G.-P.
,
2015
, “
Application of a Weak Magnetic Field to Improve Microbial Fuel Cell Performance
,”
Ecotoxicology
,
24
(
10
), pp.
2175
2180
.10.1007/s10646-015-1545-2
23.
Yin
,
Y.
,
Huang
,
G.
,
Tong
,
Y.
,
Liu
,
Y.
, and
Zhang
,
L.
,
2013
, “
Electricity Production and Electrochemical Impedance Modeling of Microbial Fuel Cells Under Static Magnetic Field
,”
J. Power Sources
,
237
, pp.
58
63
.10.1016/j.jpowsour.2013.02.080
24.
Sakai
,
Y.
,
Nitta
,
Y.
, and
Takahashi
,
F.
,
1994
, “
A Submerged Filter System Consisting of Magnetic Tubular Support Media Covered With a Biofilm Fixed by Magnetic Force
,”
Water Res.
,
28
(
5
), pp.
1175
1179
.10.1016/0043-1354(94)90205-4
25.
Taheri
,
M.
, and
Bilgen
,
E.
,
2007
, “
Bioconvection of Gravitactic Micro-Organisms in Rectangular Enclosures
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4652
4660
.10.1016/j.ijheatmasstransfer.2007.03.009
26.
Hussain
,
S.
,
Aly
,
A. M.
, and
Alsedias
,
N.
,
2022
, “
Bioconvection of Oxytactic Microorganisms With Nano-Encapsulated Phase Change Materials in an Omega-Shaped Porous Enclosure
,”
J. Energy Storage
,
56
, p.
105872
.10.1016/j.est.2022.105872
27.
Balla
,
C. S.
,
Ramesh
,
A.
,
Kishan
,
N.
,
Rashad
,
A. M.
, and
Abdelrahman
,
Z. M. A.
,
2020
, “
Bioconvection in Oxytactic Microorganism-Saturated Porous Square Enclosure With Thermal Radiation Impact
,”
J. Therm. Anal. Calorim.
,
140
(
5
), pp.
2387
2395
.10.1007/s10973-019-09009-7
28.
Venkatadri
,
K.
,
Anwar Bég
,
O.
,
Rajarajeswari
,
P.
,
Ramachandra Prasad
,
V.
,
Subbarao
,
A.
, and
Hidayathulla Khan
,
B. Md.
,
2020
, “
Numerical Simulation and Energy Flux Vector Visualization of Radiative-Convection Heat Transfer in a Porous Triangular Enclosure
,”
J. Porous Media
,
23
(
12
), pp. 1187–1199.10.1615/JPorMedia.2020033653
29.
Bég
,
O. A.
,
Venkatadri
,
K.
,
Prasad
,
V. R.
,
Bég
,
T. A.
, and
Leonard
,
H. J.
,
2021
, “
MAC Computation of Magnetohydrodynamic Convection Flow in a Non-Darcian Porous Enclosure Saturated With Electrically Conducting Helium
,”
Proc. IMechE-Part C – J. Mech. Eng. Sci.
,
236
(
5
), pp.
2203
2223
.10.1177/09544062211003624
30.
Hussain
,
S.
, and
Geridonmez
,
B. P.
,
2022
, “
Mixed Bioconvection Flow of Ag-MgO/Water in the Presence of Oxytactic Bacteria and Inclined Periodic Magnetic Field
,”
Int. Commun. Heat Mass Transfer
,
134
, p.
106015
.10.1016/j.icheatmasstransfer.2022.106015
31.
Sheremet
,
M.
,
Grosan
,
T.
, and
Pop
,
I.
,
2017
, “
Natural Convection in a Triangular Cavity Filled With a Micropolar Fluid
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
2
), pp.
504
515
.10.1108/HFF-02-2016-0061
32.
Erturk
,
E.
, and
Gokcol
,
O.
,
2007
, “
Fine Grid Numerical Solutions of Triangular Cavity Flow
,”
Eur. Phys. J.-Appl. Phys.
,
38
(
1
), pp.
97
105
.10.1051/epjap:2007057
33.
Venkatadri
,
K.
,
Murthy
,
K. V. N.
,
Bég
,
T. A.
,
Bég
,
O. A.
, and
Kuharat
,
S.
,
2024
, “
Numerical Simulation of Natural Convection in a Rectangular Enclosure Filled With Porous Medium Saturated With Magnetic Nanofluid Using Buongiorno's Two-Component Model
,”
Can. J. Chem. Eng.
,
102
(
10
), pp.
3639
3660
.10.1002/cjce.25300
34.
Venkatadri
,
K.
,
Anwar Beg
,
O.
,
Rajarajeswari
,
P.
, and
Ramachandra Prasad
,
V.
,
2020
, “
Numerical Simulation of Thermal Radiation Influence on Natural Convection in a Trapezoidal Enclosure: Heat Flow Visualization Through Energy Flux Vectors
,”
Int. J. Mech. Sci.
,
171
, p.
105391
.10.1016/j.ijmecsci.2019.105391
35.
Venkatadri
,
K.
,
Bég
,
O. A.
, and
Kuharat
,
S.
,
2022
, “
Magneto-Convective Flow Through a Porous Enclosure With Hall Current and Thermal Radiation Effects: Numerical Study
,”
Eur. Phys. J. Spec. Top.
,
231
(
13–14
), pp.
2555
2568
.10.1140/epjs/s11734-022-00592-9
36.
Bég
,
O. A.
,
Venkatadri
,
K.
,
Prasad
,
V. R.
,
Beg
,
T. A.
,
Kadir
,
A.
, and
Leonard
,
H. J.
,
2020
, “
Numerical Simulation of Hydromagnetic Marangoni Convection Flow in a Darcian Porous Semiconductor Melt Enclosure With Buoyancy and Heat Generation Effects
,”
Mater. Sci. Eng.: B
,
261
, p.
114722
.10.1016/j.mseb.2020.114722
37.
Venkatadri
,
K.
,
Fazuruddin
,
S.
,
Anwar Bég
,
O.
, and
Ramesh
,
O.
,
2023
, “
Natural Convection of Nanofluid Flow in a Porous Medium in a Right-Angle Trapezoidal Enclosure: A Tiwari and Das' Nanofluid Model
,”
J. Taibah Univ. Sci.
,
17
(
1
), p.
2263224
.10.1080/16583655.2023.2263224
38.
Lee
,
S. Y.
, and
Kim
,
H. U.
,
2015
, “
Systems Strategies for Developing Industrial Microbial Strains
,”
Nat. Biotechnol.
,
33
(
10
), pp.
1061
1072
.10.1038/nbt.3365
39.
Uddin
,
M. J.
,
Khan
,
W. A.
,
Qureshi
,
S. R.
, and
Anwar Bég
,
O.
,
2017
, “
Bioconvection Nanofluid Slip Flow Past a Wavy Surface With Applications in Nano-Biofuel Cells
,”
Chin. J. Phys.
,
55
(
5
), pp.
2048
2063
.10.1016/j.cjph.2017.08.005
40.
Elsaid
,
K.
,
Abdelkareem
,
M. A.
,
Maghrabie
,
H. M.
,
Sayed
,
E. T.
,
Wilberforce
,
T.
,
Baroutaji
,
A.
, and
Olabi
,
A. G.
,
2021
, “
Thermophysical Properties of Graphene-Based Nanofluids
,”
Int. J. Thermofluids
,
10
, p.
100073
.10.1016/j.ijft.2021.100073
41.
Rana
,
B. M. J.
,
Arifuzzaman
,
S. M.
,
Islam
,
S.
,
Reza-E-Rabbi
,
S.
,
Al-Mamun
,
A.
,
Mazumder
,
M.
,
Roy
,
K. C.
, and
Khan
,
M. S.
,
2021
, “
Swimming of Microbes in Blood Flow of Nano-Bioconvective Williamson Fluid
,”
Therm. Sci. Eng. Prog.
,
25
, p.
101018
.10.1016/j.tsep.2021.101018
42.
Kuznetsov
,
A.
,
2010
, “
The Onset of Nanofluid Bioconvection in a Suspension Containing Both Nanoparticles and Gyrotactic Microorganisms
,”
Int. Commun. Heat Mass Transfer
,
37
(
10
), pp.
1421
1425
.10.1016/j.icheatmasstransfer.2010.08.015
You do not currently have access to this content.