Abstract

Semi-analytical solutions based on Duhamel's and Laplace convolution theorems along with a Zakian series representation of the inverse Laplace transform were derived to solve forward, unsteady heat-conduction problems of a single phase, homogeneous, and finite-width slab and hollow cylinder. Both had a constant-velocity growing or receding boundary under a time-dependent, arbitrary thermal load on the moving boundary with convection on the static surface. Additionally, the inverse thermal problem was solved by modeling an arbitrary surface loading using a polynomial and temperatures measured at the opposite surface with convection. In order to assure the accuracy and versatility of the derived semi-analytical solutions, results were compared with finite element solutions with excellent agreement using a test case of an asymptotic exponential thermal excitation. In practice, the resulting direct solutions can be used to determine transient temperature during machining, wear, erosion, corrosion, and/or additive manufacturing, especially for lower temperature solid-state methods such as cold-spray. Inverse solutions can be used to remotely assess surface temperature and/or erosion/wear and/or oxidation/growth rates in severe conditions where direct measurements are not feasible.

References

1.
Crank
,
J.
,
1984
,
Free and Moving Boundary Problems
,
Clarendon
,
Oxford, UK
.
2.
Vuik
,
C.
,
1994
, “
Some Historical Notes About the Stefan Problem”. Nieuw Arch
,”
Voor Wiskd. Ser.
,
11
(
5
), pp.
157
167
.
3.
Tao
,
L.
,
1980
, “
The Analyticity of Solutions of the Stefan Problem
,”
Arch. Rat. Mech. Anal.
,
72
(
3
), pp.
285
301
.10.1007/BF00281593
4.
Boley
,
B. A.
,
1968
, “
A General Starting Solution for Melting and Solidifying Slabs
,”
Int. J. Eng. Sci.
,
6
(
2
), pp.
89
111
.10.1016/0020-7225(68)90022-0
5.
Boley
,
B. A.
, and
Yagoda
,
H. P.
,
1970
, “
Starting Solution for Melting of a Slab Under Plane or Axisymmetric Hot Spot
,”
Quart. J. Mech. Appl. Math.
,
23-2
, pp.
225
246
.10.1093/qjmam/23.2.225
6.
Boley
,
B. A.
, and
Yagoda
,
H. P.
,
1971
, “
The Three-Dimensional Starting Solution for a Melting Slab
,”
Proc. R. Soc. London Ser. A
,
323
(
1552
), pp.
89
110
.10.1098/rspa.1971.0089
7.
Hill
,
J.
,
1987
,
One-Dimensional Stefan Problems: An Introduction
,
Wiley
,
New York
.
8.
Riley
,
D.
,
Smith
,
F.
, and
Poots
,
G.
,
1974
, “
The Inward Solidification of Spheres and Circular Cylinders
,”
Int. J. Heat Mass Transfer
,
17
(
12
), pp.
1507
1516
.10.1016/0017-9310(74)90061-1
9.
Liu
,
F.
, and
Mcelwain
,
D. L. S.
,
1997
, “
A Computationally Efficient Solution Technique for Moving-Boundary Problems in Finite Media
,”
IMA J. Appl. Math.
,
59
(
1
), pp.
71
84
.10.1093/imamat/59.1.71
10.
Gottlieb
,
H.
,
2002
, “
Exact Solution of a Stefan Problem in a Nonhomogeneous Cylinder
,”
Appl. Math. Lett.
,
15
(
2
), pp.
167
172
.10.1016/S0893-9659(01)00113-6
11.
Chen
,
S.
,
Merriman
,
B.
,
Osher
,
S.
, and
Smereka
,
P.
,
1997
, “
A Simple Level Set Method for Solving Stefan Problems
,”
J. Comput. Phys.
,
135
(
1
), pp.
8
29
.10.1006/jcph.1997.5721
12.
Huang
,
C.-L.
, and
Shih
,
Y.-P.
,
1975
, “
A Perturbation Method for Spherical and Cylindrical Solidification
,”
Chem. Eng. Sci.
,
30
(
8
), pp.
897
906
.10.1016/0009-2509(75)80055-8
13.
Danilovskaya
,
V. I.
,
1950
, “
Thermal Stresses in an Elastic Half-Space Due to Sudden Heating of Its Surface
,”
Prikl. Matem. Mekh.
,
14
, pp.
316
318
.
14.
Semkin
,
B. V.
, and
Iushin
,
A. V.
,
1981
, “
On Danilovskaia Problem for the Case of a Boundary of an Elastic Half-Space Moving With Constant Velocity
,”
J. Appl. Math. Mech.
,
45
(
2
), pp.
291
292
.10.1016/0021-8928(81)90051-4
15.
Tadibakhsh
,
I. G.
,
1963
, “
Thermal Stresses in an Elastic Half-Space With a Moving Boundary
,”
AIAA J.
,
1
(
1
), pp.
214
215
.10.2514/3.1497
16.
Tanigawa
,
Y.
, and
Kuriyama
,
S.
,
1985
, “
Transient Thermal Stresses and Thermal Deformations in a Solid Cylinder With a Moving Boundary
,”
Ing. Archiv.
,
55
(
3
), pp.
221
235
.10.1007/BF00536416
17.
Kumar
,
P.
,
Segall
,
A.
, and
Drapaca
,
C.
,
2024
, “
Semi-Analytical Solution for a Single-Phase Conduction Problem of a Finite-Slab With a Growing or Receding Boundary
,”
ASME J. Heat Mass Transfer-Trans.
,
146
(
6
), p.
061001
.10.1115/1.4064829
18.
Kumar
,
P.
,
Segall
,
A.
, and
Drapaca
,
C.
,
2024
, “
Semi-Analytical Solution for a Single-Phase Thermal Conduction Problem of a Hollow-Cylinder With a Growing or Receding Inner Radius
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
146
(
8
), p.
081401
.10.1115/1.4065742
19.
Vedula
,
V.
,
Green
,
D.
,
Hellmann
,
J.
, and
Segall
,
A.
,
1998
, “
Test Methodology for the Thermal Shock Characterization of Ceramics
,”
J. Mater. Sci.
,
33
(
22
), pp.
5427
5432
.10.1023/A:1004410719754
20.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
CRC Press
,
Boca Raton, FL
.
21.
Segall
,
A. E.
,
Schoof
,
C. C.
, and
Yastishock
,
D. E.
,
2020
, “
Thermal Solutions for a Plate With an Arbitrary Temperature Transient on One Surface and Convection on the Other: Direct and Inverse Formulations
,”
ASME J. Pressure Vessel Technol.
,
142
(
5
), p.
051301
.10.1115/1.4046978
22.
Zakian
,
V.
,
1969
, “
Numerical Inversion of Laplace Transform
,”
Electron. Lett.
,
5
(
6
), pp.
120
121
.10.1049/el:19690090
23.
Hassanzadeh
,
H.
, and
Pooladi-Darvish
,
M.
,
2007
, “
Comparison of Different Numerical Laplace Inversion Methods for Engineering Applications
,”
Appl. Math. Comput.
,
189
(
2
), pp.
1966
1981
.10.1016/j.amc.2006.12.072
24.
Halsted
,
D.
, and
Brown
,
D.
,
1972
, “
Zakian's Technique for Inverting Laplace Transforms
,”
Chem. Eng. J.
,
3
, pp.
312
313
.10.1016/0300-9467(72)85037-8
25.
Askey
,
R. A.
, and
Daalhuis
,
A. B. O.
,
2010
, “
Generalized Hypergeometric Functions and Meijer G-Function
,”
NIST Handbook of Mathematical Functions, Cambridge University Press
,
New York
, p.
403
.
You do not currently have access to this content.