0


Research Papers: Alternative Energy Sources

J. Energy Resour. Technol. 2014;136(3):031201-031201-10. doi:10.1115/1.4026313.

Exergy losses represent true losses of potential to generate a desired product, exergy efficiencies always provide a measure of approach to ideality, and the links between exergy and both economics and environmental impact can help develop improvements. In this study, PV-coupled Solid Oxide Fuel Cell (SOFC) and Gas Turbine (GT)-electrolyzer hybrid power generation system is considered to determine the contribution of different hybrid system components in the total exergy loss. The number of panels, the power of SOFC–GT, and the power of electrolyzer can have different values. Therefore, to obtain the optimum combination from ecological, economical, and reliability points of view, a multi-objective optimization algorithm (PESA) is considered. This optimization method chooses a set of optimum solutions that is known as Pareto frontier. The exergy loss of some of these optimum solutions is compared with each other. The effect of panel angle and SOFC–GT fuel type on the hybrid system exergy loss is considered in this study. Also, the hybrid system exergy loss is determined in different months of the year to obtain the worst month from exergy loss view.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):031202-031202-8. doi:10.1115/1.4026915.

An experimental scale desalination pond which utilizes solar energy as a heat source is studied in this paper. The marked solar desalination pond is considered as one of the main stages in a proposed zero discharge desalination process. The effluent waste water of the desalination unit of the petrochemical complex is treated in the proposed zero discharge desalination process to produce potable water and salt. Evaporation distillation method is used in the studied solar desalination pond. Basically, this solar desalination pond is working as batch stage. At the first, the solar-powered desalination pond is introduced then the used method for distillation is discussed and the experimental results are represented in this paper, finally. The results show the feasibility of using the proposed solar-powered pond. The rate of gained distilled water by the proposed solar powered pond is compared with conventional solar pond, finally.

Topics: Solar energy , Water
Commentary by Dr. Valentin Fuster

Research Papers: Co-generation/Systems

J. Energy Resour. Technol. 2014;136(3):031301-031301-9. doi:10.1115/1.4027563.

In many cogeneration systems, one or more boilers are used in hot standby to meet the plant demand of steam in case of failure or upset in the cogeneration unit. Such boilers need to quickly respond to sudden and large steam load changes. However, fast changes in the firing rate cause transient changes in both the drum-boiler steam pressure and drum level, in addition to the potential of developing of thermal stresses in the walls of steam risers. A genetic algorithm (GA) based optimization scheme is proposed for tuning the conventional boiler control loops to maximize the ability of the boiler to respond to large steam demand while keeping the fluctuations in pressure, drum level, and feed rate within acceptable operation limits. A nonlinear model for an actual boiler is first built, validated, and then, it is used to demonstrate the performance of the boiler with the proposed control loop optimization.

Commentary by Dr. Valentin Fuster

Research Papers: Energy Conversion/Systems

J. Energy Resour. Technol. 2014;136(3):031601-031601-12. doi:10.1115/1.4026268.

The process synthesis and design optimization of energy conversion systems can be modeled as a mixed integer nonlinear programming (MINLP) problem. The nonconvexity potential and the combinatorial nature of the objective functions and constraints largely suggest the application of heuristic search methods for global optimization. In this paper, a modified differential evolutionary algorithm is applied to a MINLP problem for optimizing the design of steam cycles based on a complex superstructure, containing a variable number and varying positions of reheatings, varying layouts of the feedwater preheating train, and a boiler feedpump turbine with steam extractions. The energy-savings potential from the existing system design was studied. The optimization of a 262 bar/600 °C/ 605 °C unit with a single reheat shows that an efficiency improvement between 0.55 percentage points (PP) and 1.28 PP can be achieved. The optimal design of steam cycles over 650 °C was found to be different from those of the designs under current steam conditions: a transition throttle pressure, above which the benefits of steam temperature elevation can be completely realized, is critical and, accordingly, three design zones associated with the match of throttle pressure and the steam temperature level are clearly identified with recommended ranges of reheat pressures.

Commentary by Dr. Valentin Fuster

Research Papers: Energy Systems Analysis

J. Energy Resour. Technol. 2014;136(3):032001-032001-9. doi:10.1115/1.4027155.

Distributed generation, despite not being a new concept, is assuming a leading role in the field of energy conversion, as it should contribute to the enhancement of efficiency, flexibility, and reliability of national energy systems. However, it also noted that the effective performances of small and flexible power plants is critically influenced by their actual control strategy. Moreover, it is not trivial to identify a univocal parameter to evaluate the plant performance. For instance, cost evaluation clearly responds to an industrial view of the energy supply problem, while energy consumption or polluting emissions comply with a socio economic approach. In this scenario, the optimization of the plant management is a valuable instrument to gain insight on their behavior as the control strategy is varied, as well as to promote the distributed generation development, by maximizing the plants performances. In this paper, we further develop a graph based optimization methodology to optimize the set-point of an internal combustion engine based plant used to satisfy a hospital energy load, under different seasonal load conditions (winter, summer, and transitional seasons) and energy prices. Specifically, in order to dissect the effects of the objective function selection, two different optimization criteria are considered, namely economical optimization and primary energy consumption minimization. In particular, we focus on the features of the prime mover (i.e., the internal combustion engine) control strategy and on its drivers, as a function of the prescribed objective function. Results demonstrate that in the actual Italian energy market, cost minimization does not match primary energy consumption minimization, because the latter is only influenced by energy demand time series, and equipments performance, while the former is fundamentally driven by the electricity prices time series.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):032002-032002-9. doi:10.1115/1.4027765.

A scale-invariant model of statistical mechanics is described leading to invariant Boltzmann equation and the corresponding invariant Enskog equation of change. A modified form of Cauchy stress tensor for fluid is presented such that in the limit of vanishing intermolecular spacing, all tangential forces vanish in accordance with perceptions of Cauchy and Poisson. The invariant forms of mass, thermal energy, linear momentum, and angular momentum conservation equations derived from invariant Enskog equation of change are described. Also, some exact solutions of the conservation equations for the problems of normal shock, laminar, and turbulent flow over a flat plate, and flow within a single or multiple concentric spherical liquid droplets made of immiscible fluids located at the stagnation point of opposed cylindrically symmetric gaseous finite jets are presented.

Commentary by Dr. Valentin Fuster

Research Papers: Fuel Combustion

J. Energy Resour. Technol. 2014;136(3):032201-032201-10. doi:10.1115/1.4025844.

The study aims to investigate the real-time engine performance in terms of brake power, thermal efficiency and emission characteristics of a diesel engine. Waste vegetable oil samples were collected from several sources, mixed, and refined before transesterification. Test fuels include ultralow sulfur diesel and seven waste cooking oil biodiesel blends. Real-time data acquisition of engine performance was implemented using labview program while following the society of automotive engineers (SAE) power test code. Results showed that acid number was reduced by 99% after refining. NOx has reduced by 33% while thermal efficiency increased by 7.5% when using waste vegetable oil biodiesel.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):032202-032202-9. doi:10.1115/1.4027408.

A new hydroprocessed renewable diesel (HRD) fuel comprised both straight chain and branched alkane fuel components. In an effort to find a research surrogate for this fuel, single cylinder engine testing was performed with various blends of n-hexadecane (cetane) and isocetane in order to find a binary surrogate mixture with similar performance characteristics to that of the HRD. A blend of approximately two-thirds n-hexadecane with one-third isocetane showed the most similar behavior based on conventional combustion metrics. Companion combustion modeling was then pursued using a combined detailed chemical kinetic mechanism for both n-hexadecane and isocetane. These modeling results show both the importance of isocetane in lengthening ignition delay (IGD), as well as the overall importance of chemical ignition delay as the dominating effect in the overall ignition delay of these binary blend fuels.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):032203-032203-9. doi:10.1115/1.4026918.

Two analytical formulations that describe the fluid interactions of slag with the porous refractory linings of gasification reactors have been derived. The first formulation considers the infiltration velocity of molten slag into the porous microstructure of the refractory material that possesses an inherent temperature gradient in the direction of infiltration. Capillary pressures are assumed to be the primary driving force for the infiltration. Considering that the geometry of the pores provides a substantially shorter length scale in the radial direction as compared with the penetration direction, a lubrication approximation was employed to simplify the equation of motion. The assumption of a fully developed flow in the pores is justified based on the extremely small Reynolds numbers of the infiltration slag flow. The second formulation describes the thickness of the slag film that flows down the perimeter of the refractory lining. The thickness of the film was approximated by equating the volumetric slag production rate of the gasification reactor to the integration of the velocity profile with respect to the lateral flow cross-sectional area of the film. These two models demonstrate that both the infiltration velocity into the refractory and the thickness of the film that forms at the refractory surface were sensitive to the viscosity of the fluid slag. The slag thickness model has been applied to predict film thicknesses in a generic slagging gasifier with assumed axial temperature distributions, using slag viscosity from the literature, both for the case of a constant slag volumetric flow rate down the gasifier wall, and for the case of a constant flyash flux distributed uniformly over the entire gasifier wall.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):032204-032204-11. doi:10.1115/1.4027406.

Palm methyl ester (PME) is a renewable biofuel that is produced by the transesterification of palm oil and is a popular alternative fuel used in the transportation sector, particularly in Asia. The objective of this investigation was to study the combustion characteristics of flames of prevaporized number 2 diesel and PME in a laminar flame environment at initial equivalence ratios of 2, 3, and 7 and to isolate the factors attributable to chemical structure of the fuel. The equivalence ratio was changed by altering the fuel flow rate, while maintaining the air flow rate constant. The global CO emission index of the PME flames was significantly lower than that of the diesel flames; however, the global NO emission index was comparable. The radiative fraction of heat release and the soot volume fraction were lower for the PME flames compared to those in the diesel flames. The peak temperatures were comparable in both flames at an equivalence ratio of 2, but at higher equivalence ratios, the peak temperatures in the PME flames were higher. The measurements highlight the differences in the combustion properties of biofuels and petroleum fuels and the coupling effects of equivalence ratio.

Topics: Diesel , Flames , Soot , Emissions , Fuels
Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):032205-032205-7. doi:10.1115/1.4027692.

Rate-controlled constrained-equilibrium method has been further developed to model methane/air combustion. A set of constraints has been identified to predict the nonequilibrium evolution of the combustion process. The set predicts the ignition delay times of the corresponding detailed kinetic model to within 10% of accuracy over a wide range of initial temperatures (900 K–1200 K), initial pressures (1 atm–50 atm) and equivalence ratios (0.6–1.2). It also predicts the experimental shock tube ignition delay times favorably well. Direct integration of the rate equations for the constraint potentials has been employed. Once the values of the potentials are obtained, the concentration of all species can be calculated. The underlying detailed kinetic model involves 352 reactions among 60 H/O/N/C1-2 species, hence 60 rate equations, while the RCCE calculations involve 16 total constraints, thus 16 total rate equations. Nonetheless, the constrained-equilibrium concentrations of all 60 species are calculated at any time step subject to the 16 constraints.

Commentary by Dr. Valentin Fuster

Research Papers: Petroleum Engineering

J. Energy Resour. Technol. 2014;136(3):032901-032901-11. doi:10.1115/1.4026459.

There have been many models to estimate reserves and predict oil production performance using the relationship between water cut, fw, (or water-oil ratio, WOR) and cumulative oil production (Np) in the literature. However, it is difficult to choose the suitable models for specific reservoirs. On the other hand, consistency and accuracy are yet to be improved. In this study, several frequently used models for predicting cumulative oil production using water cut have been compared using production data from low permeability reservoirs. These models include the conventional model, the Ershaghi–Omoregie model, the Purvis model, the Arps model, the Bondar–Blasingame model, and the Warren model. All of the models were applied to production data, respectively, and then compared in one single figure, that is, fw versus Np, for one set of production data from both reservoirs and the core sample. To do so, it facilitated the comparison of different models. Otherwise, it may be difficult to make the comparison for all of the models because the models have different dependent variables. The analysis and discussion to the results have been conducted. The results have demonstrated that no model could fit all of the cases studied. Each model has the advantages and limitations. However, the Warren model is better than the other five models statistically. It fits most of the cases studied satisfactorily.

Topics: Reservoirs , Fittings , Water
Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):032902-032902-8. doi:10.1115/1.4026461.

An abnormal phenomenon may occur during gas-well testing: the wellhead pressure initially rises and then drops when shutting-in a well; the wellhead pressure initially drops and then rises when opening a well. To determine why and how this phenomenon occurs, a transient nonisothermal wellbore flow model for gas-well testing is developed. Governing equations are based on depth- and time-dependent mass, momentum equations, and the gas state equation. Temperature is predicted using the unsteady-state heat transfer model of Hasan. Boundary conditions include the restriction of formation inflow and wellhead throttling to the flow. The difference equations are established based on the implicit central finite difference method. The model can simulate the influences of temperature and flux (mass velocity). The model also considers the effects of formation inflow and surface throttling on the system. The results indicate wellhead pressure under flowing temperature is higher than that under static temperature, thus causing the abnormal phenomenon. A larger pressure difference makes the abnormal phenomenon more significant. Without considering temperature variation, simulated wellhead pressure would not exhibit the abnormity. Without considering flux variation, simulated pressure curve is not smooth. A new model has thus been validated using a gas field example.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):032903-032903-8. doi:10.1115/1.4026460.

The interpretation of hydraulic fracturing pressure was initiated by Nolte and Smith in the 1980s. An accurate interpretation of hydraulic fracturing pressures is critical to understand and improve the fracture treatment in tight gas formations. In this paper, accurate calculation of bottomhole treating pressure was achieved by incorporating hydrostatic pressure, fluid friction pressure, fracture fluid property changes along the wellbore, friction due to proppant, perforation friction, tortuosity, casing roughness, rock toughness, and thermal and pore pressure effects on in-situ stress. New methods were then developed for more accurate interpretation of the net pressure and fracture propagation. Our results were validated with field data from tight gas formations.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):032904-032904-13. doi:10.1115/1.4027571.

Vapex (vapor extraction) is a nonthermal process that has significant potential in providing a more environmentally friendly and energy-efficient alternative to steam injection. Vaporized solvent injected in-situ dissolves into the oil and reduces oil viscosity, allowing the oil to flow to a horizontal production well via gravitational forces. While compositional simulators are available for assessing the Vapex performance, the simulation process may become difficult when taking into account the uncertainty due to reservoir heterogeneity. A semi-analytical proxy is proposed to model the process, in a way analogous to the steam-assisted gravity drainage (SAGD) model described by Butler, who demonstrated the similarity between two processes with a series of Hele-Shaw experiments and derived an analytical steady-state flow rate relationship that is comparable with the SAGD case. Solvent concentration and intrinsic diffusivity are introduced in this model instead of temperature and thermal diffusivity in SAGD. In this paper, analytical solutions and implementation details for the Vapex proxy are presented. The proposed approach is then applied to various reservoirs discretized with spatially varying rock porosity and permeability values; bitumen drainage rate and solvent penetration are calculated sequentially at grid blocks along the solvent–bitumen interface over incremental time steps. Results from this model are compared against experimental data available in the literature as well as detailed compositional simulation studies. Computational requirement of the proxy in comparison with numerical simulations is also emphasized. An important contribution from this work is that process physics are built directly into this proxy, giving it an advantage over other data-driven modeling approaches (e.g., regression). It can be used as an efficient alternative to expensive detailed flow simulations. It presents an important potential for assessing the uncertainty due to multiscale heterogeneity on effective mass transfer and the resulting recovery performance, as well as assisting decisions-making for future pilot and field development.

Commentary by Dr. Valentin Fuster

Research Papers: Petroleum Transport/Pipelines/Multiphase Flow

J. Energy Resour. Technol. 2014;136(3):033001-033001-11. doi:10.1115/1.4026603.

Sand production is one of the major concerns for oil and gas producers. If production fluid velocities are not controlled properly, the produced sand may erode the pipelines which may result in pipe failures and halt the production causing economical losses as well as environmental issues. In order to better understand the erosion mechanism and improve current erosion models, it would be beneficial to identify the distribution of sand flowing inside the pipe. Therefore, sand sampling was performed at five different locations inside a 0.0732 m (3 in.) diameter horizontal pipe at L/D ∼ 150 using a pitot-style tube 6.35 mm (0.25 in.) in diameter. The probe was moved transversely from the top of the pipe and the face of the probe is facing the fluid flow to achieve sampling close to isokinetic conditions. Additionally, sampling experiments were conducted using the fixed mounted ports at the pipe wall. Using the fixed mounted ports, sampling is conducted both in a straight pipe section and elbow section. Experiments were performed in two different multiphase flow patterns (slug and wavy-annular) using two different particle sizes (150 μm and 300 μm) and three different liquid viscosities (1 cP, 10 cP, 40 cP). The influence of particle diameter, liquid viscosity, and the flow pattern on the sand distribution profiles will be discussed. From the experimental data, the recommended approaches for flowing concentration measurements are discussed. Finally, the implications of the sand concentration measurements on erosion are mentioned.

Commentary by Dr. Valentin Fuster

Research Papers: Petroleum Wells-Drilling/Production/Construction

J. Energy Resour. Technol. 2014;136(3):033101-033101-9. doi:10.1115/1.4027156.

The “Smear Effect” observed during a casing-while-drilling operation helps reduce lost circulation, provides wellbore strengthening, and improves the fracture gradient so we can drill more effectively through depleted reservoirs. Several case studies have been reported confirming the formation of a smear zone around the wellbore wall, due to the plastering of cuttings and added lost circulation materials. However, even after successful application in a number of cases, a thorough understanding of the parameters affecting the formation of the smear zone and the subsequent increase in the fracture gradient is not available. This study analyses the theory behind the phenomenon of the smear effect mechanism using case studies and existing literature, and then applies analytical models to estimate the improvement in the fracture gradient based on the drilling parameters and reservoir properties. The formation of the smear zone has been investigated by modeling the mechanism of initiation of micro-fractures around the wellbore wall due to high equivalent circulating densities (ECDs) occurring during casing while drilling. The effect of plugging of these generated micro-fractures by the drilled cuttings and additional lost circulation material added has then been modelled, to estimate the resultant improvement in fracture gradients expected along the wellbore open hole section. In addition, the appropriate particle size distribution required to successfully plug the micro-fractures has also been presented. These analytical models have then been applied to a simulated field case study and the results have been analysed in the context of recorded field observations to simulate the smear effect using the proposed models. The contribution of the casing size and length, formation properties, and operating parameters on the initiation of micro-fractures and the increase in fracture gradient has also been presented to better demonstrate the mechanism of the formation of the smear zone. This analysis is one of the first of its kind of theoretical study to understand the fundamentals of the smear effect mechanism and can be suitably applied to enhance our understanding of the smear effect to use it better to our advantage.

Commentary by Dr. Valentin Fuster

Technical Brief

J. Energy Resour. Technol. 2014;136(3):034501-034501-5. doi:10.1115/1.4026205.

Controlling the annular frictional pressure losses is important in order to drill safely with overpressure without fracturing the formation. To predict these pressure losses, however, is not straightforward. First of all, the pressure losses depend on the annulus eccentricity. Moving the drillstring to the wall generates a wider flow channel in part of the annulus which reduces the frictional pressure losses significantly. The drillstring motion itself also affects the pressure loss significantly. The drillstring rotation, even for fairly small rotation rates, creates unstable flow and sometimes turbulence in the annulus even without axial flow. Transversal motion of the drillstring creates vortices that destabilize the flow. Consequently, the annular frictional pressure loss is increased even though the drilling fluid becomes thinner because of added shear rate. Naturally, the rheological properties of the drilling fluid play an important role. These rheological properties include more properties than the viscosity as measured by API procedures. It is impossible to use the same frictional pressure loss model for water based and oil based drilling fluids even if their viscosity profile is equal because of the different ways these fluids build viscosity. Water based drilling fluids are normally constructed as a polymer solution while the oil based are combinations of emulsions and dispersions. Furthermore, within both water based and oil based drilling fluids there are functional differences. These differences may be sufficiently large to require different models for two water based drilling fluids built with different types of polymers. In addition to these phenomena washouts and tool joints will create localised pressure losses. These localised pressure losses will again be coupled with the rheological properties of the drilling fluids. In this paper, all the above mentioned phenomena and their consequences for annular pressure losses will be discussed in detail. North Sea field data is used as an example. It is not straightforward to build general annular pressure loss models. This argument is based on flow stability analysis and the consequences of using drilling fluids with different rheological properties. These different rheological properties include shear dependent viscosity, elongational viscosity and other viscoelastic properties.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):034502-034502-5. doi:10.1115/1.4027405.

For the development of oil reservoir with bottom water, it is significant to analyze the impact of drawdown pressures on post water breakthrough performance of horizontal wells. Based on a small-scale and discretized physical simulation system, the impact of different drawdown pressures and the influence of changing drawdown pressures in different water cut stage have been discussed. The results show that for thin oil with relatively high viscosity (87.8 mPa.s), keeping a relatively large drawdown pressure in medium and low water cut stage is reasonable. But enlarging drawdown pressure in high water cut stage is harmful to increase ultimate oil recovery. For oil with further lower viscosity (21.4 mPa.s), adopting a small drawdown pressure and increasing it in medium and high water cut stage is reasonable. For the heavy oil (124.1 mPa.s), it is acceptable to enlarge drawdown pressure under the condition of low water cut period.

Commentary by Dr. Valentin Fuster

Expert View

J. Energy Resour. Technol. 2014;136(3):034701-034701-5. doi:10.1115/1.4026462.

The chronic water problems in parts of India are probably due mainly to mismanagement. The rolling blackout and brownout problems in the larger Indian cities are due to lack of generation capacity. Since about ninety percent of the world's electricity is generated based on the steam Rankine cycle, environmental water is necessary for cooling, and freshwater is used as the working fluid. Furthermore, electricity is tied to water as part of the bigger water energy nexus phenomena occurring worldwide. China has started and continued with many initiatives to correct problems with water management. Projects do exist where the climatically dry north is being fed water from the wet south. China has water energy nexus conditions occurring too. The review of the scientific literature on studies about the sources of the Ganges, the Yangtze, the Yellow river, the Indus and the Mekong (the drinking water source of about forty percent of the World's population), the glaciers that feed these sources and how they are shrinking with global warming, has yielded a simple policy decision. Mass balance considerations provide the answer that the logical solution of the recent accelerated water changing from solid to liquid on mountain tops, requires dams and storage areas (lakes) to prevent all that freshwater from escaping to the lowlands, and ultimately being discharged into the oceans. One of the other major contributions in this work is to suggest conversion of (old) Rankine cycle generation of electricity to (new) combined gas cycle generation and/or simple gas cycle generation. The combined gas cycle generation can achieve efficiencies of 55–60%, while that of the Rankine cycle power generation languishes around 30%. Less water is required per MW electric power generated for condenser cooling in the combined cycle. The simple gas cycle generation can achieve 40% thermal efficiency on the average and use no water for cooling. There is also the suggestion to upgrade to supercritical power plants due to the advances in power plant technologies. The improved thermal efficiencies gained from this upgrade generate other benefits as well. Another contribution is the suggestion to use seawater for closed system condenser cooling in power plants that are not near the sea or ocean or any large body of freshwater. The open system seawater condenser cooling has been practiced for years throughout the world. This will definitely reduce the demand for freshwater, which could otherwise be used for human consumption or agriculture. Additionally, the rising seas problem locally may be reduced somewhat if enough of the seawater is used.

Commentary by Dr. Valentin Fuster
J. Energy Resour. Technol. 2014;136(3):034702-034702-3. doi:10.1115/1.4027573.

There has been an increase in oil spill research and development, especially after the Deepwater Horizon accident in the Gulf of Mexico. However, the public resources seem to be concentrated in the life sciences, rather than in engineering. The effect of oil on seaweeds and the effect of spilled oil on seabirds, for instance, seem to take precedence in government research funding, rather than engineering issues. If engineering preventive procedures and equipment are in place, then these adverse effects can be viewed as secondary. Offshore oil and gas production is an engineering endeavor, and it makes sense to expand resources in key aspects of engineering to allow for safer practices with regard to this endeavor. Offshore oil production is principally done by public companies, so it is logical that the government requires certain safety and operational standards with regard to permitting related offshore activities. It should follow that high governmental safety rules be set, and that production companies be aided by science and technology research that has been completed. A second thrust is to fund research and development for up-to-date science and engineering to meet the challenges of deep water drilling, especially in the area of machinery and devices that would help in mitigating accidents in deep water.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In