Abstract

Fractographic studies on Al alloys and a nickel-base super-alloy point to the combined action of three major load-interaction mechanisms in controlling crack growth under variable-amplitude loading. These are crack closure, residual stress, and crack front incompatibility. Crack front incompatibility attenuates crack tip response to applied load and can also increase crack closure stress. Notch root residual stress affects crack closure, while crack tip residual stress moderates environment-enhanced fatigue crack extension. The latter effect disappears in vacuum. Experiments designed to isolate the effect of individual mechanisms provide a framework to model their synergistic action, consistent with microscopic observations of crack growth bands in variable amplitude fatigue.

References

1.
Schijve
,
J.
, “
Observations on the Prediction of Fatigue Crack Growth Propagation under Variable Amplitude Loading
,” ASTM STP 595,
ASTM International
,
West Conshohocken, PA
,
1976
, pp.
3
-
23
.
2.
Elber
,
W.
, “
The Significance of Fatigue Crack Closure
,”
Damage Tolerance in Aircraft Structures
, ASTM STP 486,
ASTM International
,
West Conshohocken, PA
,
1971
, pp.
230
-
242
.
3.
Wheeler
,
O. E.
,
Journal of Basic Engineering, Trans. ASME
,
03
1972
, pp.
181
-
186
.
4.
Willenborg
,
J. D.
,
Engle
,
R. M.
, and
Wood
,
H. A.
, “
A Crack Growth Retardation Model Using an Effective Stress Concept
,” AFFDL-TM-FBR-71-1,
Air Force Flight Dynamics Laboratory
,
1971
.
5.
Schijve
,
J.
, “
Fatigue Damage Accumulation and Incompatible Crack Front Orientation
,”
Eng. Fract. Mech.
 0013-7944, Vol.
6
,
1974
, pp.
245
-
252
.
6.
Baudin
,
G.
, and
Robert
,
M.
, “
Crack Growth Life Prediction under Aeronautical Type of Loading
,”
Proc. 5th European Conf. on Fracture
,
Lisbon
,
1984
, pp.
779
-
792
.
7.
de Koning
,
A. U.
, “
A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates under Variable Amplitude Loading
,”
Fracture Mechanics
, ASTM STP 743,
R.
Roberts
, Ed.,
1981
, pp.
63
-
85
.
8.
Aliaga
,
D.
,
Davy
,
A.
, and
Schaff
,
H.
, “
A Simple Crack Closure Model for Predicting Fatigue Crack Growth under Flight Simulation Loading
,”
Durability and Damage Tolerance in Aircraft Design
,
A.
Salvetti
and
G.
Cavallini
, Eds.,
EMAS
,
Warley
,
1985
, pp.
605
-
630
.
9.
Newman
,
J. C.
, “
A Crack-Closure Model for Predicting Fatigue Crack Growth under Aircraft Spectrum Loading
,”
Methods and Models for Predicting Fatigue Crack Growth under Random Loading
, ASTM STP 748,
J. B.
Chang
and
C. M.
Hudson
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1981
, pp.
53
-
84
.
10.
Newman
,
J. C.
, Jr.
,
Phillips
,
E. P.
, and
Everett
,
R. A.
, “
Fatigue Life and Crack Growth Prediction Methodology
,”
An Assessment of Fatigue Damage and Crack Growth Prediction Techniques
, AGARD Report 797, AGARD, Neuillu sur Seine,
1994
, Paper 2.
11.
Lang
,
M.
, “
A Model for Fatigue Crack Growth, Part I: Phenomenology
,”
Fatigue Fract. Engg. Mater, Struct.
, Vol.
23
, No.
7
,
2000
, pp.
587
-
601
.
12.
Lang
,
M.
and
Marci
,
G.
, “
The Influence of Single and Multiple Overloads on Fatigue Crack Propagation
,”
Fatigue Fract. Engg. Mater, Struct.
, Vol.
22
, No.
4
,
1999
, pp.
257
-
271
.
13.
Vasudevan
,
A. K.
,
Sadananda
,
K.
, and
Loust
,
N.
, “
A Review of Crack Closure, Fatigue Crack Threshold and Related Phenomena
,”
Materials Science and Engineering
,
A188
,
1994
, pp.
1
-
22
.
14.
Hopkins
,
S. W.
,
Rau
,
C. A.
,
Leverant
,
G. R.
, and
Yuen
,
A.
, “
Effect of Various Programmed Overloads on the Threshold for High-Frequency Fatigue Crack Growth
,”
Fatigue Crack Growth Under Spectrum Loads
, ASTM STP 595,
ASTM International
,
West Conshohocken, PA
,
1976
, pp.
125
-
141
.
15.
Sunder
,
R.
and
Dash
,
P. K.
, “
Measurement of Fatigue Crack Closure Through Electron Fractography
,”
Int. J. Fatigue
 0142-1123 https://doi.org/10.1016/0142-1123(82)90065-2, Vol.
4
,
1982
, pp.
97
-
105
.
16.
Ashbaugh
,
N. E.
,
Porter
,
W. J.
,
Prakash
,
R. V.
, and
Sunder
,
R.
, “
A Fractographic Study of Load Sequence Induced Mixed-Mode Fatigue Crack Growth in an Al-Cu Alloy
,”
Mixed-Mode Crack Behavior
, ASTM STP 1359,
K. J.
Miller
and
D. L.
McDowell
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1999
, pp.
258
-
278
.
17.
Sunder
,
R.
,
Porter
,
W. J.
, and
Ashbaugh
,
N. E.
, “
The Role of Air in Fatigue Load Interaction
,”
Fatigue Fract. Engg Mater Struct
, Vol.
26
,
2003
, pp.
1
-
16
.
18.
Sunder
,
R.
, “
An Explanation for the Residual Stress Effect in Metal Fatigue
,”
Fatigue 2002 — Proc. 8th International Fatigue Congress
,
Stockholm
,
2002
,
EMAS
, pp.
3339
-
3350
.
19.
Ashbaugh
,
N. E.
,
Porter
,
W. J.
,
Rosenberger
,
A. H.
, and
Sunder
,
R.
, “
Environment-Related Load History Effects in Elevated Temperature Fatigue of a Nickel-Base Super-Alloy
,”
Proc., Fatigue 2002
,
Stockholm
, June 2–7, 2002.
20.
Ashbaugh
,
N. E.
,
Dattaguru
,
B.
,
Khobaib
,
M.
,
Nicholas
,
T.
,
Prakash
,
R. V.
,
Ramamurthy
,
T. S.
, et al
, “
Experimental and Analytical Estimates of Fatigue Crack Closure in an Aluminum-Copper Alloy. Part I: Laser Interferometry and Electron Fractography
,”
Fatigue Fract. Engg. Mater. Struct
, Vol.
20
, No.
7
,
1997
, pp.
951
-
961
.
21.
Ritchie
,
R. O.
, “
Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Shielding
,”
Materials Science and Engineering
, Vol.
A103
,
1988
, pp.
15
-
28
.
22.
Suresh
,
S.
, “
Models for Fatigue Crack Deflection
,”
Fatigue '84
,
EMAS
,
C. J.
Beevers
, Ed., Vol.
1
,
1984
, pp.
555
-
563
.
23.
Sunder
,
R.
,
Prakash
,
R. V.
, and
Mitchenko
,
E. I.
, “
Fractographic Study of Notch Fatigue Crack Closure and Growth Rates
,” ASTM STP 1203,
J. E.
Masters
and
L. E.
Gilbertson
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1993
, pp.
113
-
131
.
24.
Sunder
,
R.
, “
Notch Root Crack Closure under Cyclic Inelasticity
,”
Fatigue Fract. Engg. Mater. Struct.
, Vol.
16
, pp.
677
-
692
.
25.
Morrow
,
J. D.
,
Wetzel
,
R. M.
, and
Topper
,
T. H.
, “
Laboratory Simulation of Structural Fatigue Behavior
,”
Effects of Environment and Complex Load History on Fatigue Life
, ASTM STP 462,
ASTM International
,
West Conshohocken, PA
,
1970
, pp.
74
-
91
.
26.
Anandan
,
K.
and
Sunder
,
R.
, “
Closure of Part-Through Cracks at the Notch Root
,”
Int. J. Fatigue
 0142-1123, Vol.
9
, pp.
217
-
222
.
27.
Vogelesang
,
L. B.
and
Schijve
,
J.
, “
Environmental Effects on Fatigue Failure Mode Transition Observed in Aluminium Alloys
,” Report LR-289,
Delft University of Technology
, Delft, Netherlands,
1979
.
28.
Schijve
,
J.
and
Arkema
,
W. J.
, “
Crack Closure and the Environmental Effect on Fatigue Crack Growth
,” Report VTH-217,
Delft University of Technology Fac. Aerospace Eng. Delft
, Netherlands,
1976
.
29.
Sunder
,
R.
, “
Fatigue Crack Growth as a Consequence of Environment-Enhanced Brittle-Micro Fracture
,”
Fatigue Fract. Engg. Mater. Struct.
, Accepted for publication,
2003
.
30.
Sunder
,
R.
,
Porter
,
W. J.
, and
Ashbaugh
,
N. E.
, “
Fatigue Voids and Their Significance
,”
Fatigue Fract. Engng Mater Struct.
, Vol.
25
,
2002
, pp.
1015
-
1024
.
31.
Sanders
,
T. H.
, Jr.
, and
Staley
,
J. T.
, “
Review of Fatigue and Fracture Research on High-Strength Al-Alloys
,”
Fatigue and Microstructure
,
American Society for Metals
,
Metals Park, OH
,
1978
, pp.
467
-
516
32.
Staley
,
J. T.
, “
How Microstructure Affects Fatigue and Fracture of Aluminum Alloys
,” Presented at the
International Symposium on Fracture Mechanics
,
George Washington University School of Engineering and Applied Science
,
Washington, D.C.
, Sep. 11–13, 1978.
33.
Bennett
,
V.
and
McDowell
,
D. L.
, “
Polycrystal Orientation Effects on Microslip and Mixed-Mode Behavior of Microstructurally Small Cracks
,” ASTM STP 1359,
K. J.
Miller
and
D. L.
McDowell
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1999
, pp.
203
-
228
.
This content is only available via PDF.
You do not currently have access to this content.