Abstract

This paper presents the behavior of selected aluminum alloys when subjected to a single overload, with an aim to highlight the effects of plasticity and environment. The delaying effect of a single overload is given in terms of number of delay cycles. The delay behavior is systematically compared with the constant amplitude crack growth resistance. It is shown that for most of the studied alloys, a strong parallel can be drawn between the constant amplitude crack growth behavior and the overload induced delay. Delay induced by an overload in vacuum is higher than that in air for the 7075 and the 2024 alloys, compatible with stronger constant amplitude crack growth resistance in vacuum. The influence of the elastic-plastic behavior is stronger in vacuum than in air. In the case of the Aluminum Lithium alloy, delay in air is higher than that in vacuum, which is opposite to the behavior under constant amplitude loading. The basic mechanisms governing crack growth in aluminum alloys and their influence on the delay induced by an overload are revealed. The experimental results are compared with a phenomenological model, taking into account the cyclic plastic behavior of materials.

References

1.
Schijve
,
J.
, NRL Report MP 195,
National Aeronautical and Astronautical Research Institute
, Amsterdam, Holland,
1960
.
2.
Ranganathan
,
N.
,
Petit
,
J.
, and
de Fouquet
,
J.
,
Advances in Fracture Research
,
Pergamon Press
,
1984
, 3, pp.
1767
-
1773
.
3.
Willenborg
,
J.
,
Engle
,
R. M.
, and
Wood
,
H. A.
, Technical Report TFR 71-701,
Los Angles Division
, North American Rockwell,
1971
.
4.
Christensen
,
R. H.
,
Metal Fatigue
,
McGraw-Hill
,
1959
.
5.
Elber
,
W.
,
Damage Tolerance in Aircraft structures
, ASTM STP 486,
ASTM International
,
West Conshohocken, PA
,
1971
, pp.
230
-
242
.
6.
Petit
,
J.
,
Tintillier
,
R.
,
Ranganathan
,
N.
,
Ait-Abdedaim
,
M.
, and
Chalant
,
G.
,
Fatigue Crack Growth under Variable Amplitude Loading
,
Elsevier Applied Sciences Pubs.
,
1988
, pp.
162
-
179
.
7.
Matsuoka
,
S.
and
Tanaka
,
K.
, “
Delayed Retardation Phenomenon of Fatigue Crack Growth Resulting from a Single Application of Overload
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
10
, No.
3
,
1978
, pp.
515
-
525
.
8.
Ranganathan
,
N.
,
Quintard
,
A.
,
Petit
,
J.
, and
de Fouquet
,
J.
,
Environmentally Assisted Cracking
, ASTM STP 1043,
ASTM International
,
West Conshohocken, PA
,
1989
, pp.
374
-
390
9.
Wei
,
R. P.
and
Shih
,
T. T.
,
International Journal of Fatigue
,
10
,
1974
, pp.
77
-
82
.
10.
Petit
,
J.
,
Fatigue Crack Growth Threshold Concepts
,
D. L.
Davidson
and
S.
Suresh
, Eds.,
AIME
,
Warrendale, PA
,
1984
, pp.
1
-
24
.
11.
Hornbogen
,
H.
and
Zum Gahr
,
K. H.
, “
Microstructure and Fatigue Crack Growth in a γ-Fe-Ni-Al Alloy
,”
Acta Metallurgica
 0001-6160, Vol.
24
, No.
6
,
1976
, pp.
581
-
592
.
12.
Ranganathan
,
N.
,
Bouchet
,
B.
, and
Petit
,
J.
Fractography of Modern Engineering Materials: Composites and Metals
, ASTM STP 948,
ASTM International
,
West Conshohocken, PA
,
1987
, pp.
424
-
446
.
13.
Kemp
,
R. M. J.
,
Wilson
,
R. N.
, and
Gregson
,
P. J.
,
Fatigue and Fracture of Engineering Materials and Structures
,
15
,
1992
, pp.
291
-
299
.
14.
Ranganathan
,
N.
,
Adiwijayanto
,
F.
,
Petit
,
J.
, and
Bailon
,
J. P.
, “
Fatigue Crack Propagation Mechanisms in an Aluminum Lithium Alloy
,”
Acta Metallurgica and Materialia
, Vol.
43
, No.
3
,
1995
, pp.
1029
-
1035
.
15.
Dugdale
,
D. S.
, “
Yielding of Steel Sheets Containing Slits
,”
Journal of Mechanics and Physics of Solids
 0022-5096 https://doi.org/10.1016/0022-5096(60)90013-2, Vol.
8
, No.
2
,
1960
, pp.
100
-
104
.
16.
Ranganathan
,
N.
,
Petit
,
J.
, and
Bouchet
,
B.
, “
A Contribution to the Study of Fatigue Crack Retardation in Vacuum
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
11
, No.
4
,
1979
, pp.
775
-
789
.
17.
Ranganathan
,
N.
and
Petit
,
J.
,
Fatigue Mechanisms: Advances in Physical Measurement of Fatigue Damage
, ASTM STP 911,
ASTM International
,
West Conshohocken, PA
,
1983
, pp.
464
-
484
.
18.
Vecchio
,
R. S.
,
Hertzberg
,
R. W.
, and
Jaccard
,
R.
, “
Overload Induced Crack Growth Rate Attenuation Behavior in Aluminum Alloys
,”
Scripta Metallurgica
, Vol.
17
, No.
3
,
1983
, pp.
343
-
346
.
19.
Wanhill
,
R. J. H.
and
Schijve
,
J.
,
Fatigue Crack Growth under Variable Amplitude Loading
,
Elsevier Applied Sciences
,
1988
, pp.
326
-
339
.
This content is only available via PDF.
You do not currently have access to this content.