Abstract

This paper deals with the reliability analysis of the influence of an overload on the fatigue design of welded joints. The modeling of the fatigue life is presented as the sum of four parts: the first one concerns the fatigue life initiation, the second one involves the fatigue life between the initiation period and the overload application, the third one deals with the fatigue life behavior from the overload to the total restoration of the crack growth rate, and the fourth is related to the fatigue life between the end of the retardation zone until the failure. Concerning the modeling of the retardation effect, particular attention is given to the calculation of the effective stress intensity factor. Finally, the developed methodology is applied to the case of welded joints in order to evaluate the importance of considering the overload effect in the reliability analysis.

References

1.
Paris
,
P.
and
Erdogan
,
F.
, “
A Critical Analysis of Crack Propagation Laws
,”
Journal of Basic Engineering
 0021-9223, Trans. ASME, Vol.
85
,
1963
, pp.
528
-
534
.
2.
Masden
,
H. O.
,
Krenk
,
S.
, and
Lind
,
N. C.
, “
Methods of Structural Safety
,”
W. J.
Hall
, Ed.,
Prentice-Hall, Inc.
,
Enlewood Cliffs, NJ
,
1986
.
3.
Morrow
,
J. D.
, “
Cyclic Plastic Strain Energy and Fatigue of Metals
,”
Internal Friction, Damping and Cyclic Plasticity
, ASTM STP 378,
ASTM International
,
West Conshohocken, PA
,
1965
, pp.
45
-
87
.
4.
Neuber
,
H
, “
Theory of Stress Concentration for Shear Strained Prismatic Bodies with Arbritary Non-Linear Stress-Strain Law
,”
Journal of Applied Mechanics
 0021-8936, Vol.
26
, No.
4
,
1961
, pp.
544
-
550
.
5.
Decoopman
,
X.
, “
Influence des conditions de chargement sur le retard à la propagation d'une fissure de fatigue après l'application d'une surcharge
,” Ph.D. Thesis,
University of Sciences and Technologies of Lille (France)
, (In French),
1999
.
6.
Lang
,
M.
, “
A Model for Fatigue Crack Growth, Part I: Phenomenology
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
23
,
2000
, pp.
587
-
601
.
7.
Irwin
,
G. R.
, “
Plastic Zone near a Crack and Fatigue Toughness
,”
Mechanical and Metallurgical Behavior of Sheet Material, Proceedings of the 7th Sagamore Ordinance, Materials Research Conference, Section IV
,
Syracuse Univ. Res. Inst.
,
1960
, pp.
63
-
71
.
8.
Elber
,
W.
, “
The Significance of Fatigue Crack Closure
,”
Damage Tolerance in Aircraft Structures
, ASTM STP 486,
ASTM International
,
West Conshohocken, PA
,
1971
, pp.
230
-
242
.
9.
Schijve
,
J.
, “
Fatigue Crack Propagation in Alloy Sheet Material and Structure
,”
Advances in Aeronautical Sciences
, Vol.
3
,
1962
,
Pergamon Press
,
Oxford, UK
, pp.
387
-
408
.
10.
Marci
,
G.
, “
Effect of the Active Plastic Zone on Fatigue Crack Growth Rates
,”
Fracture Mechanics
, ASTM STP 667,
C. W.
Smith
, Ed.,
ASTM International
,
West Conshohocken, PA
,
1979
, pp.
168
-
186
.
11.
Bowles
,
C. Q.
, “
The Role of Environment, Frequency and Shape During Fatigue Crack Growth in Aluminum Alloys
,” Doctoral Dissertation,
Delft University
,
1978
.
12.
Paris
,
P. C.
, “
Paper Presented at the International Congress of Applied Mechanics
,”
Delft University
,
1976
.
13.
Darcis
,
P.
, “
Analyse de la fatigue des joints soudés soumis à l'effet d'une surcharge
,” Ph.D. Thesis,
University Blaise Pascal — Clermont II (France)
, (In French),
2002
.
14.
Lang
,
M.
and
Marci
,
G.
, “
The Influence of Single and Multiple Overloads on Fatigue Crack Propagation
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
22
,
1999
, pp.
257
-
271
.
15.
Lu
,
Y.
and
Li
,
K.
, “
A New Model for Fatigue Crack Growth after a Single Overload
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
46
, No.
5
,
1993
, pp.
849
-
856
.
16.
Cotterill
,
P. J.
and
Knott
,
J. F.
, “
Overload Retardation of Fatigue Crack Growth in a 9% Cr 1% Mo Steel at Elevated Temperatures
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
19
, Nos.
2
and
3
,
1996
, pp.
207
-
216
.
17.
Pommier
,
S.
, “
Plane Strain Crack Closure and Cyclic Hardening
,”
Engineering Fracture Mechanics
 0013-7944, Vol.
69
,
2002
, pp.
25
-
44
.
18.
Kumar
,
R.
,
Kumar
,
A.
, and
Kumar
,
S.
, “
Delay Effects in Fatigue Crack Propagation
,”
International Journal of Pressure Vessels and Piping
 0308-0161, Vol.
67
,
1996
, pp.
1
-
5
.
19.
Ranganathan
,
N.
,
Lafarie-Frenot
,
M. C.
, and
Petit
,
J.
, “
Effect of Overloads on the Evolution of Plastic Zones and Its Significance
,”
8th Congress on Material Testing, Scientific Society of mechanical Engineers
,
Omikk-Technoinform, Budapest
,
1982
, pp.
309
-
313
.
20.
Wheeler
,
O. E.
,
Journal of Basic Engineering
 0021-9223, Trans ASME, Vol.
4
,
1972
, pp.
181
-
186
.
21.
Willenborg
,
J. D.
,
Engle
,
R. M.
, and
Wood
,
H. A.
, “
A Crack Growth Retardation Model Using an Effective Stress Concept
,” AFFDL-TM-FBR-71-1,
USAF Flight Dynamics Lab
,
1971
.
22.
Filippi
,
M.
,
Darcis
,
P.
, and
Recho
,
N.
, “
Modeling of Crack Growth Retardation Due to Plastic Zone Following an Overload
,”
Symposium on Fatigue Testing and Analysis under Variable Amplitude Loading
,
Tours, France
29–31 May 2002.
23.
Lassen
,
T.
, “
The Effect of the Welding Process on the Fatigue Crack Growth
,”
Agder College of Engineering
,
Grimstad, Norway
, Weld, Research Supplement 76-s,
1990
.
24.
Grous
,
A.
,
Recho
,
N.
,
Lassen
,
T.
, and
Lieurade
,
H. P.
, “
Caractéristiques mécaniques de fissuration et de défaut initial dans les soudures d'angles, en fonction du procédé de soudage
,”
Journées d'études sur la fatigue des composants et des structures soudés
, CETIM, SIS, GAMI et l'IS,
1992
, Senlis, France (In French).
25.
Yang
,
J. Y.
and
Lawrence
,
F. V.
, “
Analytical and Graphical Aids for the Fatigue Design of Weldments
,”
Fatigue and Fracture of Engineering Materials and Structures
, Vol.
8
,
1985
, pp.
223
-
241
.
This content is only available via PDF.
You do not currently have access to this content.