Abstract

A new class of polymer composites has been developed for flame retardancy and passive fire protection. The key feature is a controlled transition from a degrading polymer composite to a ceramic residue in a fire situation. The polymer can be thermoplastic, thermoset or elastomeric. The composites are processable using conventional equipment to form extruded profiles, sheet, moldings, each of which may be foamed. The composites can retain flexibility and durability within the required filler content range. Fire protection is afforded by formation of a ceramic by fusion and reaction of the fillers over a defined temperature range. Ceramic formation commences at relatively low temperature coincident with polymer pyrolysis to maintain structural integrity of the material and minimizes shrinkage. The ceramic is able to develop adequate strength to maintain a fire barrier. One form of the material has been implemented in fire resistant cable sheathing. The composites discussed were prepared from poly(siloxiane) elastomer to demonstrate the concept.

References

1.
Thomas
,
T. H.
, and
Kendrick
,
T. C.
Thermal analysis of polydimethylsiloxanes. I. Thermal degradation in controlled atmospheres
,”
J. Polym. Sci., Part A-2
 0098-1273 https://doi.org/10.1002/pol.1969.160070308,
7
,
1969
,
537
549
.
2.
Preston
,
C. M. L.
,
Amarasinghe
,
G.
,
Hopewell
,
J. L.
,
Shanks
,
R. A.
,
Mathys
,
Z.
Evaluation of polar ethylene copolymers as fire retardant nanocomposite matrices
,”
Polym. Degrad. Stab.
 0141-3910,
84
,
2004
,
533
544
.
3.
Alexander
,
G.
,
Cheng
,
Y.-B.
,
Burford
,
R. P.
,
Shanks
,
R.
,
Mansouri
,
J.
,
Hodzic
,
A.
,
Wood
,
C.
,
Genovese
,
A.
,
Barber
,
K. W.
,
Pulahinge
,
R.
,
Dayananda
,
D.
,
Fire-Resistant Silicone Polymer Composition
.
2004
, (
Polymers Australia Pty Limited
,
Australia
). Application: WO2004/013255A1. p. 38.
4.
Ehasni
,
M.
,
Borsi
,
H.
,
Gockenbach
,
E.
,
Morshedian
,
J.
, and
Bakhshandeh
,
G. R.
An investigation of dynamic mechanical, thermal and electrical properties of housing materials for outdoor polymeric insulators
,”
Eur. Polym. J.
 0014-3057 https://doi.org/10.1016/j.eurpolymj.2004.03.014
40
,
2004
,
2495
2503
.
5.
Belot
,
V.
,
Corriu
,
R. J. P.
,
Leclercq
,
D.
,
Mutin
,
P. H.
, and
Vioux
,
A.
Thermal redistribution reactions in crosslinked polysiloxanes
,”
J. Polym. Sci., Part A: Polym. Chem.
 0887-624X https://doi.org/10.1002/pola.1992.080300413
30
,
1992
,
613
623
.
6.
Thomas
,
T. H.
, and
Kendrick
,
T. C.
Thermal analysis of polydimethylsiloxanes. II. Thermal vacuum degradation of polysiloxanes with different substituents on silicon and the main siloxane chain
,”
J. Polym. Sci., Part A-2
 0098-1273 https://doi.org/10.1002/pol.1970.160081016,
8
,
1969
,
1823
1830
.
7.
Wilson
,
D.
,
Beckley
,
D.
, and
Koo
,
J. H.
Development of silicone matrix-based advanced composites for thermal protection
,”
At. Plasma-Mater. Interact. Data Fusion
 1018-5577,
6
,
1994
,
165
181
.
8.
Camino
,
G.
,
Lomakin
,
S. M.
, and
Lazzari
,
M.
Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects
,”
Polymer
 0032-3861 https://doi.org/10.1016/S0032-3861(00)00652-2,
42
,
2001
,
2395
2402
.
9.
Camino
,
G.
,
Lomakin
,
S. M.
, and
Lageard
,
M.
Polydimethylsiloxane thermal degradation Part 2. The degradation mechanisms
,”
Polymer
 0032-3861 https://doi.org/10.1016/S0032-3861(01)00785-6,
43
,
2002
,
2011
2015
.
10.
Genovese
,
A.
, and
Shanks
,
R. A.
Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hydroxide and zinc borate
,”
Polym. Degrad. Stab.
 0141-3910 
92
,
2007
,
2
13
.
11.
Leonard
,
J. E.
,
Bowditch
,
P. A.
, and
Dowling
,
V. P.
, “
Development of a controlled-atmosphere cone calorimeter
,”
Fire Mater.
 0308-0501 https://doi.org/10.1002/1099-1018(200005/06)24:3<143::AID-FAM728>3.0.CO;2-L,
24
,
2000
,
143
150
.
12.
Brown
,
J. R.
,
Mathys
,
Z.
,
Riddell
,
S. Z.
, and
Wake
,
L. V.
Fire-retardant performance of some surface coatings for naval ship interior applications
,”
Fire Mater.
 0308-0501 https://doi.org/10.1002/fam.810190303
19
,
1995
,
109
118
.
13.
Fire Tests - Reaction to Fire - Rate of Heat Release from Building Products (Cone Calorimeter Method)
,” ISO 5660-1.
1993
:
International Organization for Standardization
, Geneva.
This content is only available via PDF.
You do not currently have access to this content.