Abstract

Irradiation hardening and microstructural change of oxide dispersion strengthened (ODS) ferritic steels were investigated by using the ion-irradiation technique. The material used for the present study was K3 (16C-2W-0.3Ti-4.6Al-0.4Y2O3) ODS ferritic steel for the application to Generation IV concept advanced reactors and fusion reactors. 6.4 MeV Fe3+ ions were used to irradiate to the K3 ODS steel by using a 1.7 MeV tandem accelerator. The irradiation temperatures were 300°C and 500°C. The nominal displacement damage rate and total displacement damage were 1×10−3 dpa/s and up to 10 dpa at about 600-nm depth from the irradiated surface, respectively. Nano-indentation hardness was evaluated with a Berkovich indenter. After the ion-irradiation at 300°C up to 1 dpa, the normalized nano-indentation hardness (hardness after irradiation/hardness before irradiation) of the K3 ODS steel reached about 1.28 and the value showed no change up to 10 dpa. On the other hand, the ion-irradiation at 500°C up to 10 dpa showed no significant irradiation hardening. TEM observation revealed that dense and fine dislocation loops were formed in the ion-irradiated steels at 300°C, which were probably enough to explain the irradiation hardening.

References

1.
Kimura
,
A.
,
Cho
,
H. S.
,
Toda
,
N.
,
Kasada
,
R.
,
Kishimoto
,
H.
,
Iwata
,
N.
,
Ukai
,
S.
, and
Fujiwara
,
M.
, “
Fuel Cladding Materials R&D for High Burn-up Operation of Advanced Water-cooling Nuclear Energy Systems
,”
Proceedings of International Congress on Advances in Nuclear Power Plants, ICAPP’05
, Seoul, Korea, 2005, CD-ROM file, paper 5338.
2.
Kimura
,
A.
,
Kasada
,
R.
,
Kohyama
,
A.
,
Konishi
,
S.
,
Enoeda
,
M.
,
Akiba
,
M.
,
Jitsukawa
,
S.
,
Ukai
,
S.
,
Terai
,
T.
, and
Sagara
,
A.
, “
Ferritic Steel-blanket Systems Integration R&D—Compatibility Assessment
,”
Fusion Eng. Des.
 0920-3796, Vol.
81
,
2006
, pp.
909
916
.
3.
Ukai
,
S.
,
Narita
,
T.
,
Alamo
,
A.
, and
Parmentier
,
P.
, “
Tube Manufacturing Trials by Different Routes in 9CrW-ODS Martensitic Steels
,”
J. Nucl. Mater.
 0022-3115, Vols.
329
–333,
2004
, p. 356.
4.
Kasada
,
R.
,
Toda
,
N.
,
Yutani
,
K.
,
Cho
,
H. S.
,
Kishimoto
,
H.
, and
Kimura
,
A.
, “
Pre- and Post-Deformation Microstructures of Oxide Dispersion Strengthened Ferritic Steels
,” submitted to
J. Nucl. Mater.
 0022-3115.
5.
Yutani
,
K.
,
Kishimoto
,
H.
,
Kasada
,
R.
, and
Kimura
,
A.
, “
Evaluation of Helium Effects on Swelling Behavior of Oxide Dispersion Strengthened Ferritic Steel Under Ion Irradiation
,” submitted to
J. Nucl. Mater.
 0022-3115.
6.
Kishimoto
,
H.
,
Yutani
,
K.
,
Kasada
,
R.
,
Hashitomi
,
O.
, and
Kimura
,
A.
, “
Heavy-ion Irradiation Effects on the Morphology of Complex Oxide Particles in Oxide Dispersion Strengthening Ferritic Steels
,” submitted to
J. Nucl. Mater.
 0022-3115.
7.
Kishimoto
,
H.
,
Yutani
,
K.
,
Kasada
,
R.
, and
Kimura
,
A.
, “
Helium Cavity Formation Research on Oxide Dispersed Strengthening (ODS) Ferritic Steels Utilizing Dual-ion Irradiation Facility
,”
Fusion Eng. Des.
 0920-3796, Vol.
81
,
2006
, pp.
1045
1049
.
8.
Yamashita
,
S.
,
Yoshitake
,
T.
,
Akasaka
,
N.
,
Ukai
,
S.
, and
Kimura
,
A.
, “
Mechanical Behavior of Oxide Dispersion Strengthened Steels Irradiated in JOYO
,”
Mater. Trans.
 1345-9678, Vol.
46
,
2005
, pp.
493
497
.
9.
Yoshitake
,
T.
,
Abe
,
Y.
,
Akasaka
,
N.
,
Ohtsuka
,
S.
,
Ukai
,
S.
, and
Kimura
,
A.
, “
Ring-tensile Properties of Irradiated Oxide Dispersion Strengthened Ferritic/Martensitic Steel Claddings
,”
J. Nucl. Mater.
 0022-3115, Vols.
329
–333,
2004
, pp.
342
346
.
10.
Alamo
,
A.
,
Lambard
,
V.
,
Averty
,
X.
, and
Mathon
,
M. H.
, “
Assessment of ODS-14% Cr Ferritic Alloy for High Temperature Applications
,”
J. Nucl. Mater.
 0022-3115, Vols.
329
–333,
2004
, pp.
333
337
.
11.
Yoshitake
,
T.
,
Ohmori
,
T.
, and
Miyakawa
,
S.
, “
Burst Properties of Irradiated Oxide Dispersion Strengthened Ferritic Steel Claddings
,”
J. Nucl. Mater.
 0022-3115, Vols.
307
–311,
2002
, pp.
788
792
.
12.
Chen
,
C. Q.
,
Sun
,
J. G.
, and
Xu
,
Y. C.
, “
Neutron Irradiation Hardening of ODS Alloy Tested by Miniature Disk Bend Test Method
,”
J. Nucl. Mater.
 0022-3115, Vols.
283
–287,
2000
, pp.
1011
1013
.
13.
Kohyama
,
A.
,
Katoh
,
Y.
,
Ando
,
M.
, and
Jimbo
,
K.
, “
New Multiple Beams-Material Interaction Research Facility for Radiation Damage Studies in Fusion Materials
,”
Fusion Eng. Des.
 0920-3796, Vols.
51
–52,
2000
, pp.
789
795
.
15.
Tanigawa
,
H.
,
Ando
,
M.
,
Katoh
,
Y.
,
Hirose
,
T.
,
Sakasegawa
,
H.
,
Jitsukawa
,
S.
,
Kohyama
,
A.
, and
Iwai
,
T.
, “
Response of Reduced Activation Ferritic Steels to High-fluence Ion-irradiation
,”
J. Nucl. Mater.
 0022-3115, Vol.
297
,
2001
, pp.
279
284
.
16.
Gelles
,
D. S.
,
Kimura
,
A.
, and
Shibayama
,
T.
, “
Analysis of Stress-induced Burger’s Vector Anisotropy in Pressurized Tube Specimens of Irradiated Ferritic-martensitic Steels: JFMS and JLF-1
,”
Effects of Radiation on Materials: 19th International Symposium, ASTM STP 1366
,
M. L.
Hamilton
,
A. S.
Kumar
,
S. T.
Rosinski
, and
M. L.
Grossbeck
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2000
, pp.
535
547
.
17.
Oliver
,
W. C.
and
Pharr
,
G. M.
, “
Measurement of Hardness and Elastic Modulus by Instrumented Indentation: Advances in Understanding and Refinements to Methodology
,”
J. Mater. Res.
 0884-2914 https://doi.org/10.1557/jmr.2004.19.1.3, Vol.
19
,
2004
, pp.
3
20
.
18.
Yasuda
,
K.
,
Shinohara
,
K.
,
Kinoshita
,
C.
,
Yamada
,
M.
, and
Arai
,
M.
, “
Development of the Ultra-microhardness Technique for Evaluating Stress-strain Properties of Metals
,”
J. Nucl. Mater.
 0022-3115, Vols.
212
–215,
1994
, pp.
1698
1702
.
19.
Rice
,
P. M.
and
Stoller
,
R. E.
, “
Correlation of Nanoindentation and Conventional Mechanical Property Measurements
,”
Materials Research Society Symposium—Proceedings 649, Fundamentals of Nanoindentation and Nanotribology II
,
S. P.
Baker
,
R. F.
Cook
,
S. G.
Corcoran
,
N. R.
Moody
, Eds.,
Materials Research Society
,
Warrendale, PA
,
2001
, pp. Q7.11.1–Q7.11.6.
20.
Suganuma
,
K.
and
Kayano
,
H.
, “
Irradiation Hardening of Fe-Cr Alloys
,”
J. Nucl. Mater.
 0022-3115, Vol.
118
,
1983
, pp.
234
241
.
21.
Mathon
,
M. H.
,
de Carlan
,
Y.
,
Geoffroy
,
G.
,
Averty
,
X.
,
de Novion
,
C. H.
, and
Alamo
,
A.
, “
Microstructure Evolution of Reduced Activation and Conventional Martensitic Steels after Thermal Aging and Neutron Irradiation
,”
Effects of Radiation on Materials: 20th International Symposium, ASTM STP 1405
,
S. T.
Rosinski
,
M. L.
Grossbeck
,
T. R.
Allen
, and
A. S.
Kumar
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2001
, pp.
674
693
.
22.
Miller
,
M. K.
,
Stoller
,
R. E.
, and
Russell
,
K. F.
, “
Effect of Neutron-irradiation on the Spinodal Decomposition of Fe-32% Cr Model Alloy
,”
J. Nucl. Mater.
 0022-3115, Vol.
230
,
1996
, pp.
219
225
.
23.
Stoller
,
R. E.
and
Zinkle
,
S. J.
, “
On the Relationship Between Uniaxial Yield Strength and Resolved Shear Stress in Polycrystalline Materials
,”
J. Nucl. Mater.
 0022-3115, Vols.
283
–287,
2000
, pp.
349
352
.
24.
Moteff
,
J.
,
Michel
,
D. J.
, and
Sikka
,
V. K.
, “
Influence of Irradiation Temperature on the Hardening Behavior of the Refractory BCC Metals and Alloys
,”
Proceedings of the 1973 International Conference on Defects and Defect Clusters in B.C.C. Metals and Their Alloys
,
R. J.
Arsenault
, Ed.,
Nuclear Metallurgy Committee of the Metallurgical Society of AIME, the National Bureau of Standards, and the National Science Foundation
,
Gaithersburg, MD
,
1973
, pp.
197
215
.
25.
Baluc
,
N.
,
Schaublin
,
R.
,
Spatig
,
P.
, and
Victoria
,
M.
, “
Hardening Mechanisms in Ferritic/Martensitic Steels
,”
Effects of Radiation on Materials: 21st International Symposium, ASTM STP 1447
,
M. L.
Grossbeck
,
T. R.
Allen
,
R. G.
Lott
, and
A. S.
Kumar
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2004
, pp.
341
351
.
26.
Stoller
,
R. E.
, “
Hardening Mechanisms in Ferritic/Martensitic Steels
,”
Effects of Radiation on Materials: 21st International Symposium, ASTM STP 1447
,
M. L.
Grossbeck
,
T. R.
Allen
,
R. G.
Lott
, and
A. S.
Kumar
, Eds.,
ASTM International
,
West Conshohocken, PA
,
2004
, pp.
341
351
.
27.
Mansur
,
L. K.
, “
Correlation of Neutron and Heavy-ion Damage: II. The Predicted Temperature Shift if Swelling with Changes in Radiation Dose Rate
,”
J. Nucl. Mater.
 0022-3115 https://doi.org/10.1016/0022-3115(78)90514-7, Vol.
78
,
1978
, p. 156.
28.
Mansur
,
L. K.
, “
Theory and Experimental Background on Dimensional Changes in Irradiated Alloys
,”
J. Nucl. Mater.
 0022-3115 https://doi.org/10.1016/0022-3115(94)90009-4, Vol.
216
,
1994
, p. 97.
29.
Stoller
,
R. E.
, “
Modeling the Influence of Irradiation Temperature and Displacement Rate on Hardening Due to Point Defect Clusters in Ferritic Steels
,”
Effects of Radiation on Materials: 16th International Symposium, ASTM STP 1175
,
A. S.
Kumar
,
D. S.
Gelles
,
R. K.
Nanstad
, and
E. A.
Little
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1993
, pp.
394
423
.
30.
Ando
,
M.
,
Wakai
,
E.
,
Sawai
,
T.
,
Tanigawa
,
H.
,
Furuya
,
K.
,
Jitsukawa
,
S.
,
Takeuchi
,
H.
,
Oka
,
K.
,
Ohnuki
,
S.
, and
Kohyama
,
A.
, “
Synergistic Effect of Displacement Damage and Helium Atoms on Radiation Hardening in F82H at TIARA Facility
,”
J. Nucl. Mater.
 0022-3115, Vols.
329
–333,
2004
, p. 1137.
This content is only available via PDF.
You do not currently have access to this content.