Abstract

A new embrittlement correlation method developed for the Japanese reactor pressure vessel (RPV) steels is presented. The Central Research Institute of Electric Power Industry and the Japanese electric utilities conducted a project to develop a new embrittlement correlation method for the Japanese RPV steels based on the understandings on the mechanisms of the RPV embrittlement. In addition to the information from the literatures, we generated new information by characterizing the microstructural changes in the surveillance materials of the Japanese commercial reactors. We found that in low Cu materials, solute atom clusters containing little or no Cu atoms are formed at relatively low fluence of 3×1019 n/cm2, E>1 MeV. The volume fraction of the solute atom clusters has a good correlation with the Charpy transition temperature shift regardless of the Cu content. We also found that the microstructure of the boiling water reactor surveillance material is different from that of the archive material irradiated in material testing reactor. The understandings on the RPV embrittlement mechanisms were formulated using a set of rate equations, and the coefficients of the equations were optimized using the ΔRTNDT values of the Japanese surveillance database. This method considers the effect of neutron flux. Only one set of coefficients was developed, and they are independent of the product form. Predictions of the new embrittlement correlation method were compared with those of the recent U.S. correlation method as well as the U.S. surveillance data. The comparison shows the characteristics of the present method.

References

1.
JEAC4201-2004, December 21,
2004
, “
Method of Surveillance Tests for Structural Materials of Nuclear Reactors
,” Japan Electric Association, Chiyoda-ku, Tokyo, Japan.
2.
Eason
,
E. D.
,
Wright
,
J. E.
, and
Odette
,
G. R.
, “
Improved Embrittlement Correlations for Reactor Pressure Vessel Steels
,” Report No. NUREG/CR-6551, U.S. Nuclear Regulatory Commission, Washington, D.C., November
1998
.
3.
ASTM E900-02,
2002
, “
Standard Guide for Predicting Radiation-Induced Transition Temperature Shift for Reactor Vessel Materials, E706(IIF)
,” Annual Book of ASTM Standards, Vol.
12.02
, ASTM International, West Conshohocken, PA.
4.
Eason
,
E. D.
,
Odette
,
G. R.
,
Nanstad
,
R. K.
, and
Yamamoto
,
T.
, “
A Physically Based Correlation of Irradiation—Induced Transition Temperature Shifts for RPV Steels
,” Report No. ORNL-TM-2006/530, U.S. Nuclear Regulatory Commission, Washington, D.C.,
2007
.
5.
For example,
Odette
,
G. R.
and
Lucas
,
G. E.
,
Radiat. Eff. Defects Solids
 1042-0150, Vol.
144
,
1998
, pp.
189
231
. https://doi.org/10.1080/10420159808229676
6.
Miller
,
M. K.
and
Burke
,
M. G.
, “
Fine-Scale Microstructural Characterization of Pressure Vessel Steels and Related Materials Using APFIM
,”
Effects of Radiation on Materials: 14th International Symposium (Volume II), ASTM STP 1046
,
N. H.
Packan
,
R. E.
Stoller
, and
A. S.
Kumar
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1990
, p. 107.
7.
Auger
,
P.
,
Pareige
,
P.
,
Akamatsu
,
M.
, and
Blavette
,
D.
, “
APFIM Investigation of Clustering in Neutron-Irradiated Fe–Cu Alloys and Pressure Vessel Steels
,”
J. Nucl. Mater.
 0022-3115, Vol.
225
,
1995
, pp.
225
230
. https://doi.org/10.1016/0022-3115(94)00522-2
8.
Carter
,
R. G.
,
Soneda
,
N.
,
Dohi
,
K.
,
Hyde
,
J. M.
,
English
,
C. A.
, and
Server
,
W. L.
, “
Microstructural Characterization of Irradiation-Induced Cu-Enriched Clusters in Reactor Pressure Vessel Steels
,”
J. Nucl. Mater.
 0022-3115, Vol.
298
,
2001
, pp.
211
224
. https://doi.org/10.1016/S0022-3115(01)00659-6
9.
Hauthorne
,
J. R.
, “
Significance of Nickel and Copper Content to Radiation Sensitivity and Post-irradiation Heat Treatment Recovery of Reactor Vessel Steels
,”
Effects of Radiation on Materials: 11th Conference, ASTM STP 782
,
H. R.
Brager
and
J. S.
Perrin
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1982
, p. 375.
10.
Carter
,
R. G.
, “
Conclusions from the EPRI-CRIEPI Workshop on Dose Rate Effects in RPV Materials
,”
Conference Proceedings of Workshop on Dose Rage Effects in Reactor Pressure Vessel Materials, EPRI 1006981, CRIEPI T980203
, Squaw Creek Resort, Olympic Valley, CA, November 12–14,
2001
,
Electric Power Research Institute
,
Palo Alto, CA
and Central Research Institute of Electric power Industry, Komae Tokyo, Japan, pp. 1.1–1.9.
11.
Odette
,
G. R.
, “
Microstructure Induced Microstructural Evolution in Reactor Pressure Vessel Steels
,”
Microstructure of Irradiated Materials, MRS Symp. Proc
, Vol.
373
,
I. M.
Robertson
,
L. E.
Rehn
,
S. J.
Zinkle
, and
W. J.
Phythian
, Eds.,
MRS
,
Pittsburgh, PA
,
1995
, p. 137.
12.
Odette
,
G. R.
,
Liu
,
C. L.
, and
Wirth
,
B. D.
On the Composition and Structure of Nanoprecipitates in Irradiated Pressure Vessel Steels
,”
Microstructure Evolution During Irradiation, MRS Symp. Proc.
, Vol.
439
,
I. M.
Robertson
,
G. S.
Was
,
L. W.
Hobbs
, and
T.
Diaz de la Rubia
, Eds.,
MRS
,
Pittsburgh, PA
,
1997
, p. 547.
13.
Soneda
,
N.
,
Dohi
,
K.
,
Nomoto
,
A.
,
Nishida
,
K.
, and
Ishino
,
S.
, “
Development of Neutron Irradiation Embrittlement Correlation of Reactor Pressure Vessel Materials of Light Water Reactors
,” Report No. CRIEPI Q06019, Central Research Institute of Electric Power Industry, Komae, Tokyo, Japan, April
2007
.
14.
Auger
,
P.
,
Pareige
,
P.
,
Akamatsu
,
M.
, and
Van Duysen
,
J.-C.
, “
Microstructural Characterization of Atom Clusters in Irradiated Pressure Vessel Steels and Model Alloys
,”
J. Nucl. Mater.
 0022-3115, Vol.
211
,
1994
, pp.
194
201
. https://doi.org/10.1016/0022-3115(94)90347-6
15.
Otaka
,
M.
and
Osaki
,
T.
, “
Reduction of Upper Shelf Energy of Highly Irradiated RPV Steels
,”
Conference Proceedings of the 30th MPA-Seminar in Conjunction with the Ninth German-Japanese Seminar
, Paper No. 9.1, Stuttgart, October 6–7,
2004
,
Materials Testing Institute
,
University of Stuttgart, Stuttgart
.
16.
Soneda
,
N.
,
Dohi
,
K.
,
Nishida
,
K.
,
Nomoto
,
A.
,
Tomimatsu
,
M.
, and
Matsuzawa
,
H.
, “
Microstructural Characterization of RPV Materials Irradiated to High Fluences at High Flux
,”
J. ASTM Int.
 1546-962X, Vol.
6
, No.
7
,
2009
, Paper ID JAI102128.
17.
Nuclear and Industrial Safety Agency (NISA)
, “
Basic Concept on the Enhancement of the Ageing Management
,” April 6,
2005
, Ministry of Economy, Trade and Industry, Chiyoda-ku, Tokyo, Japan (in Japanese).
18.
Fisher
,
S. B.
,
Harbottle
,
J. E.
, and
Aldridge
,
N.
, “
Radiation Hardening in Magnox Pressure Vessel Steels
,”
Philos. Trans. R. Soc. London, Ser. A
 0962-8428, Vol.
315
,
1985
, pp.
301
332
. https://doi.org/10.1098/rsta.1985.0042
19.
Fisher
,
S. B.
and
Buswell
,
J. T.
, “
A Model for PWR Pressure Vessel Embrittlement
,”
Int. J. Pressure Vessels Piping
 0308-0161, Vol.
27
,
1987
, pp.
91
135
. https://doi.org/10.1016/0308-0161(87)90007-X
20.
Soneda
,
N.
,
Ishino
,
S.
,
Takahashi
,
A.
, and
Dohi
,
K.
, “
Modeling the Microstructural Evolution in bcc-Fe During Irradiation Using Kinetic Monte Carlo Computer Simulation
,”
J. Nucl. Mater.
 0022-3115, Vol.
323
,
2003
, pp.
169
180
. https://doi.org/10.1016/j.jnucmat.2003.08.021
21.
Hiranuma
,
N.
,
Soneda
,
N.
,
Dohi
,
K.
,
Ishino
,
S.
,
Dohi
,
N.
, and
Ohata
,
H.
, “
Mechanistic Modeling of Transition Temperature Shift of Japanese RPV Materials
,”
30th MPA-Seminar in Conjunction with the Ninth German-Japanese Seminar
, Paper No. 3.1, Stuttgart, October 6–7,
2004
,
Materials Testing Institute
,
University of Stuttgart, Stuttgart
.
22.
Jones
,
R. B.
and
Williams
,
T. J.
, “
The Dependence of Radiation Hardening and Embrittlement on Irradiation Temperature
,”
Effects of Radiation on Materials: 17th International Symposium, ASTM STP 1270
,
D. S.
Gelles
,
R.
Nanstad
,
A. S.
Kumar
, and
E. A.
Little
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, p. 569.
23.
Debarberis
,
L.
,
Acosta
,
B.
,
Sevini
,
F.
,
Krykov
,
A.
,
Gillemot
,
G.
,
Valo
,
M.
,
Kikolaev
,
A.
, and
Brumovsky
,
M.
, “
Role of Nickel in a Semi-Mechanistic Analytical Model for Radiation Embrittlement of Model Alloys
,”
J. Nucl. Mater.
 0022-3115, Vol.
336
,
2005
, pp.
210
216
. https://doi.org/10.1016/j.jnucmat.2004.10.002
24.
Japan Power Engineering and Inspection Corporation (JAPEIC)
, “
Annual Report on PLIM Project
,” JAPEIC, Minato-ku, Tokyo, March
2003
.
25.
Soneda
,
N.
,
English
,
C.
, and
Server
,
W.
, “
Use of an Offset in Assessing Radiation Embrittlement Data and Predictive Models
,”
Proceedings of PVP2006-ICPVT-11, 93369, 2006 ASME Pressure Vessels and Piping Division Conference
, Vancouver, BC, Canada, July 23–27,
2006
,
American society of Mechanical Engineers
,
New York, NY
.
26.
BWR VIP-178NP: BWR Vessel and Internal Project, Nonproprietary Report of Material Test Results from the BWR Integrated Surveillance Program (ISP)
,” Report No. 1015504, Epri, Palo Alto, CA,
2007
.
27.
McElroy
,
R. J.
and
Lowe
,
A. L.
, Jr.
, “
Irradiation Embrittlement Modelling of Linde 80 Weld Metals
,”
ASTM STP1270
,
D. S.
Gelles
,
R.
Nanstad
,
A. S.
Kumar
, and
E. A.
Little
, Eds.,
ASTM International
,
West Conshohocken, PA
,
1996
, pp.
68
85
.
28.
ASTM E399-09,
2009
, “
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials
,” Annual Book of ASTM Standards, Vol.
03.01
, ASTM International, West Conshohocken, PA.
29.
JEAC4201-2007,
2007
, “
Method of Surveillance Test for Structural Materials of Nuclear Reactors
,”Japan Electric Association, Chiyoda-ku, Tokyo, Japan.
This content is only available via PDF.
You do not currently have access to this content.