Three related analytical thermal models of plane heat source moving obliquely along the surface of a semi-infinite solid are presented. The temperature distribution of grinding zone under deep-cut conditions is investigated with these models. It is proposed that the oblique angle of the heat source plane to its moving direction has an essential influence on the grinding zone temperature rise and its distribution of high efficiency deep grinding (HEDG). Compared with that in creep-feed grinding, HEDG has a different form of heat flux distribution in grinding zone and should be treated with different thermal models. The temperature distribution at the shear zone of orthogonal cutting is also briefly discussed with the thermal models. The models developed in the paper provide a more rational and integrated analytical basis for dealing with the heat transfer problems of inclined moving heat sources.

1.
Jaeger
,
J. C.
,
1942
, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. Proc. R. Soc. N. S. W.
,
76
, pp.
456
464
.
2.
Des Ruisseaux
,
N. R.
, and
Zerkle
,
R. D.
,
1970
, “
Thermal Analysis of the Grinding Process
,”
ASME J. Eng. Ind.
,
92
, pp.
428
434
.
3.
Des Ruisseaux
,
N. R.
, and
Zerkle
,
R. D.
,
1970
, “
Temperature in Semi-infinite and Cylindrical Bodies Subjected Moving Heat Sources and Surface Cooling
,”
ASME J. Heat Transfer
,
92
, pp.
456
464
.
4.
Malkin
,
S.
, and
Anderson
,
R. B.
,
1974
, “
Thermal Aspects of Grinding: Part 1: Energy Partition,” “Part 2: Surface Temperature and Workpiece Burn
,”
ASME J. Eng. Ind.
,
96
, pp.
1177
1191
.
5.
Guo
,
C.
, and
Malkin
,
S.
,
1995
, “
Analysis of Energy Partition in Grinding
,”
ASME J. Eng. Ind.
,
117
, pp.
55
61
.
6.
Lavine
,
A. S.
, and
Jen
,
T. C.
,
1991a
, “
Thermal Aspects of Grinding: Heat Transfer to Workpiece, Wheel, and Fluid
,”
ASME J. Heat Transfer
,
113
, pp.
296
303
.
7.
Lavine
,
A. S.
, and
Jen
,
T. C.
,
1991b
, “
Coupled Heat Transfer to Workpiece, Wheel, and Fluid in Grinding, and the Occurrence of Workpiece Burn: Heat Transfer
,”
Int. J. Heat Mass Transf.
,
34
, pp.
983
992
.
8.
Jen
,
T. C.
, and
Lavine
,
A. S.
,
1995
, “
A Variable Heat Flux Model of Heat Transfer in Grinding: Model Development
,”
ASME J. Heat Transfer
,
117
, pp.
473
478
.
9.
Jen
,
T. C.
, and
Lavine
,
A. S.
,
1996
, “
A Variable Heat Flux Model of Heat Transfer in Grinding With Boiling
,”
ASME J. Heat Transfer
,
118
, pp.
463
470
.
10.
Loewen
,
E. G.
, and
Shaw
,
M. C.
,
1954
, “
On the Analysis of Cutting Tool Temperatures
,”
Trans. ASME
,
76
, pp.
217
221
.
11.
Dawson
,
P. R.
, and
Malkin
,
S.
,
1984
, “
Inclined Moving Heat Source Model for Calculating Metal Cutting Temperature
,”
ASME J. Eng. Ind.
,
106
, pp.
179
186
.
12.
Rapier
,
A. C.
,
1954
, “
A Theoretical Investigation of The Temperature Distribution In The Metal Cutting
,”
Br. J. Appl. Phys.
,
5
, pp.
400
405
.
13.
Tay
,
A. O.
,
Stevenson
,
M. G.
, and
de Vahl Davis
,
G.
,
1974
, “
Using the Finite Element Method to Determine Temperature Distribution in Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
188
, No.
55
, pp.
627
638
.
14.
Ren, J. X., 1988, Grinding Principle, Press of Northeastern Polytechnic University (China).
15.
Hou, Z. B., 1984, Heat Conduction in Solid, Press of Shanghai Science and Technology, Shanghai, China.
16.
Kim
,
N. K.
,
Guo
,
C.
, and
Malkin
,
S.
,
1997
, “
Heat Flux Distribution And Energy Partition In Creep-Feed Grinding
,”
Annals of the CIRP
,
46
, No.
1
, pp.
227
232
.
17.
Tawakoli
,
T.
, et al.
,
1992
, “
Hochleistungsschleifen (HEDG) von Inconel und anderen Werkstoffen
VDI-Z
, Nr. 1-Januar,
134
, pp.
48
57
.
18.
Lavine
,
A. S.
,
1988
, “
A Simple Model for Convective Cooling During the Grinding Process
,”
ASME J. Eng. Ind.
,
110
, pp.
1
6
.
You do not currently have access to this content.