This paper describes chip morphology and forces in end milling of elastomers. A classification system that identifies elastomer chips based on their size and morphology is described. Optical pictures and Scanning Electron Microscopy (SEM) micrographs were used to examine and classify chips. A four-step examination procedure is developed to specify seven types of chips. Serrated chip formation with apparent adiabatic shear bands was observed for one end milling condition. The low thermal conductivity of elastomer is a possible cause for the observed shear band formation. Another type of serrated chip was found with surface wavy marks due to vibration of the workpiece. End milling force components were also recorded and analyzed. It was found that end milling of solid carbon dioxide cooled elastomers generated higher forces than the room temperature workpiece. A correlation of the maximum uncut chip thickness on averaged peak cutting force components is identified for different spindle speeds. This has indicated the potential for modeling elastomer machining processes.

1.
Nakayama
,
K.
, and
Ogawa
,
M.
,
1978
, “
Basic Rules on the Form of Chip in Metal Cutting
,”
CIRP Ann.
,
27
(
1
), pp.
17
21
.
2.
Nakayama
,
K.
, and
Arai
,
M.
,
1992
, “
Comprehensive Chip Form Classification Based on the Cutting Mechanism
,”
CIRP Ann.
,
41
(
1
), pp.
71
74
.
3.
Jawahir
,
I. S.
, and
von Luttervelt
,
C. A.
,
1993
, “
Recent Development in Chip Control Research and Applications
,”
CIRP Ann.
,
42
(
2
), pp.
659
685
.
4.
Venkatesh
,
V. C.
,
Zhou
,
D. Q.
,
Xue
,
W.
, and
Quinto
,
D. T.
,
1993
, “
A Study of Chip Surface Characteristics During the Machining of Steel
,”
CIRP Ann.
,
42
(
1
), pp.
631
636
.
5.
Batzer
,
S. A.
,
Haan
,
D. M.
,
Rao
,
P. D.
,
Olson
,
W. W.
, and
Sutherland
,
J. W.
,
1998
, “
Chip Morphology and Hole Surface Texture in the Drilling of Cast Aluminum Alloys
,”
J. Mater. Process. Technol.
,
79
, pp.
72
78
.
6.
Jawahir
,
I. S.
, and
Balaji
,
A. K.
,
2000
, “
Predictive Modeling and Optimization of Turning Operations with Complex Grooved Cutting Tools for Curled Chip Formation and Chip Breaking
,”
Mach. Sci. Technol.
,
4
(
3
), pp.
399
443
.
7.
Trent, E. M., and Wright, P. K., 2001, Metal Cutting, 4th Ed., Butterworth-Heinemann.
8.
Shaw, M. C., 1986, Metal Cutting Principles, Oxford.
9.
Komanduri
,
R.
, and
Brown
,
R. H.
,
1981
, “
On the Mechanics of Chip Segmentation in Machining
,”
ASME J. Eng. Ind.
,
103
, pp.
33
51
.
10.
Komanduri
,
R.
, and
von Turkovich
,
B. F.
,
1981
, “
New Observations on the Mechanism of Chip Formation when Machining Titanium Alloys
,”
Wear
,
69
, pp.
179
188
.
11.
Elbestawi
,
M. A.
,
Chen
,
L.
,
Becze
,
C. E.
, and
El-Wardany
,
T. I.
,
1997
, “
High-Speed Milling of Dies and Molds in Their Hardened State
,”
CIRP Ann.
,
46
(
1
), pp.
57
62
.
12.
Ng
,
E. G.
,
Lee
,
D. W.
,
Sharman
,
A. R. C.
,
Dewes
,
R. C.
, and
Aspinwall
,
D. K.
,
2000
, “
High Speed Ball Nose End Milling of Inconel 718
,”
CIRP Ann.
,
49
(
1
), pp.
41
46
.
13.
Becze
,
C. E.
,
Clayton
,
P.
,
Chen
,
L.
,
El-Wardany
,
T. I.
, and
Elbestawi
,
M. A.
,
2000
, “
High-speed Five-axis Milling of Hardened Tool Steel
,”
Int. J. Mach. Tools Manuf.
,
40
(
6
), pp.
869
885
.
14.
Ning
,
Y.
,
Rahman
,
M.
, and
Wong
,
Y. S.
,
2001
, “
Investigation of Chip Formation in High Speed End Milling
,”
J. Mater. Process. Technol.
,
113
, pp.
360
367
.
15.
A. Kobayahsi, 1981, Plastics Cutting, Krieger.
16.
Recht
,
R. F.
,
1964
, “
Catastrophic Thermoplastic Shear
,”
ASME J. Appl. Mech.
,
31
, pp.
189
193
.
17.
Sheikh-Ahmad
,
J.
, and
Bailey
,
J. A.
,
1997
, “
Flow Instability in the Orthogonal Machining of CP Titanium
,”
ASME J. Eng. Manuf. Sci.
,
119
, pp.
307
313
.
18.
Yang
,
X.
, and
Liu
,
C. R.
,
1999
, “
Machining Titanium and its Alloys
,”
Mach. Sci. Technol.
,
3
(
1
), pp.
107
139
.
19.
Xie
,
J. Q.
,
Bayoumi
,
A. E.
, and
Zbib
,
H. M.
,
1996
, “
A Study on Shear Banding in Chip Formation of Orthogonal Machining
,”
Int. J. Mach. Tools Manuf.
,
36
(
7
), pp.
835
847
.
20.
von Turkovich, B. F., and Durham, D. R., 1982, “Machining Titanium and its Alloys,” D. F. Hasson and C. H. Hamilton, eds., Advanced Processing Methods for Titanium, pp. 257–274, Metallurgical Society of AIME.
21.
Shih
,
A. J.
,
Lewis
,
M. A.
, and
Strenkowski
,
J. S.
,
2004
, “
End Milling of Elastomers—Fixture Design and Tool Effectiveness for Material Removal
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
126
133
.
22.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Lindberg
,
J. R.
,
1982
, “
The Prediction Cutting Forces in End Milling with Application to Cornering Cut
,”
Int. J. Mach. Tools Manuf.
,
22
, pp.
7
22
.
23.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
,
1986
, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,”
ASME J. Eng. Ind.
,
108
, pp.
269
279
.
24.
Smith
,
S.
, and
Tlusty
,
J.
,
1991
, “
An Overview of Modeling and Simulation of the Milling Process
,”
ASME J. Eng. Ind.
,
113
, pp.
169
175
.
25.
Ehmann
,
K. F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Lazoglu
,
I.
,
1997
, “
Machining Process Modeling: A Review
,”
ASME J. Manuf. Sci. Eng.
,
119
(
4
), pp.
655
663
.
You do not currently have access to this content.