Microscale Laser Shock Peening (LSP) is a technique that can be potentially applied to manipulate the residual stress distributions in metal film structures and thus improve the reliability of micro-devices. This paper reports high-spatial-resolution characterization of shock treated copper thin films on single-crystal silicon substrates, where scanning x-ray microtopography is used to map the relative variation of the stress/strain field with micron spatial resolution, and instrumented nanoindentation is applied to measure the distribution of hardness and deduce the sign of the stress/strain field. The measurement results are also compared with 3-D simulation results. The general trends in simulations agree with those from experimental measurements. Simulations and experiments show that there is a near linear correlation between strain energy density at the film-substrate interface and the X-ray diffraction intensity contrast.

1.
Miller, S. L., Rodgers, M. S., LaVigine, G., Sniegowski, J. J., Clews, P., Tanner, D. M., and Peterson, K. A., 1998, “Failure Modes in Surface Micromachined Micro-Electro-Mechanical Actuators,” IEEE 98CH36173, 36th Annual International Reliability Physics Symposium, pp. 17–25.
2.
Tanner, D. M., Walraven, J. A., Helgesen, K. S., Irwin, L. W., Gregory, D. L., Stake, J. R., and Smith, N. F., 2000, “MEMS Reliability in a Vibration Environment,” IEEE 00CH37059, 38th Annual International Reliability Physics Symposium, pp. 139–145.
3.
Zhang, W., and Yao, Y. L., 2000, “Improvement of Laser Induced Residual Stress Distributions via Shock Waves,” Proc. ICALEO’00, Laser Materials Processing, Vol. 89, pp. E183–192.
4.
Zhang
,
W.
, and
Yao
,
Y. L.
,
2002
, “
Micro Scale Laser Shock Processing of Metallic Components
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
369
378
.
5.
Noyan
,
I. C.
,
Jordan-sweet
,
J. L.
,
Liniger
,
E. G.
, and
Kaldor
,
S. K.
,
1998
, “
Characterization of Substrate/Thin-film Interfaces with X-ray Microdiffraction
,”
Appl. Phys. Lett.
,
72
(
25
), pp.
3338
3340
.
6.
Wang
,
P.-C.
,
Noyan
,
I. C.
,
Kaldor
,
S. K.
,
Jordan-sweet
,
J. L.
,
Liniger
,
E. G.
, and
Hu
,
C.-K.
,
2000
, “
Topographic Measurement of Electromigration-induced Stress Gradients in Aluminum Conductor Lines
,”
Appl. Phys. Lett.
,
76
(
25
), pp.
3726
3728
.
7.
Suresh
,
S.
, and
Giannakopoulos
,
A. E.
,
1998
, “
A New Method for Estimating Residual Stresses by Instrumented Sharp Indentation
,”
Acta Mater.
,
46
, pp.
5755
5767
.
8.
Noyan
,
I. C.
,
Wang
,
P.-C.
,
Kaldor
,
S. K.
,
Jordan-Sweet
,
J. L.
, and
Liniger
,
E. G.
,
2000
, “
Divergence Effects in Monochromatic X-ray Microdiffraction Using Tapered Capillary Optics
,”
Rev. Sci. Instrum.
,
71
(
25
), pp.
1991
2000
.
9.
Noyan
,
I. C.
,
Wang
,
P.-C.
,
Kaldor
,
S. K.
, and
Jordan-Sweet
,
J. L.
,
1999
, “
Deformation Field in Single-crystal Semiconductor Substrates Caused by Metallization Features
,”
Appl. Phys. Lett.
,
74
(
16
), pp.
2352
2354
.
10.
Cullity, B. D., 1978, Elements of X-ray Diffraction, London, Addison-Wesley Publishing Company, Inc., Second edition, pp. 103, and pp. 268–270.
11.
Blech
,
I. A.
, and
Meieran
,
E. S.
,
1967
, “
Enhanced X-ray Diffraction from Substrate Crystals Containing Discontinuous Surface Films
,”
J. Appl. Phys.
,
38
, pp.
2913
2919
.
12.
Segmu¨ller
,
A.
,
Angilelo
,
J.
, and
La Placa
,
S. J.
,
1980
, “
Automatic X-ray Diffraction Measurement of the Lattice Curvature of Substrate Wafers for the Determination of Linear Strain Patterns
,”
J. Appl. Phys.
,
51
(
12
), pp.
6224
6230
.
13.
Erko, A. I., Aristov, V. V., and Vidal, B., 1996, Diffraction X-ray Optics, Philadelphia, Institute of Physics Publishing Ltd, pp. 2–15.
14.
Gilvarry
,
J.
,
Chowdhury
,
A. K.
,
Monclus
,
M.
,
Cameron
,
D. C.
,
McNally
,
P. J.
, and
Tuomi
,
T.
,
1998
, “
Stress Behavior of Reactively Sputtered Nitrogenated Carbon Films
,”
Surf. Coat. Technol.
,
98
, pp.
985
990
.
15.
Ventsel, E., and Krauthammer, T., 2001, Thin Plates and Shells: Theory, Analysis and Applications, New York, Marcel Dekker, Inc., pp. 37.
16.
Laursen
,
T. A.
, and
Simo
,
J. C.
,
1992
, “
A Study of the Mechanics of Microindentation Using Finite Elements
,”
J. Mater. Res.
,
7
, pp.
618
626
.
17.
Giannakopoulos
,
A. E.
,
Larsson
,
P. L.
, and
Vestergaard
,
R.
,
1994
, “
Analysis of a Vickers Indentation
,”
Int. J. Solids Struct.
,
31
, pp.
2679
2708
.
18.
Larsson
,
P. L.
,
Giannakopoulos
,
A. E.
,
Soderlund
,
E.
,
Rowcliffe
,
D. J.
, and
Vestergaard
,
R.
,
1996
, “
Analysis of Berkovich Indentation
,”
Int. J. Solids Struct.
,
33
(
2
), pp.
221
248
.
19.
King
,
R. B.
,
1987
, “
Elastic Analysis of Some Punch Problems for a Layered Medium
,”
Int. J. Solids Struct.
,
23
(
12
), pp.
1657
1664
.
20.
Giannakopoulos
,
A. E.
, and
Suresh
,
S.
,
1999
, “
Determination of Elastoplastic Properties by Instrumented Sharp Indentation
,”
Scr. Mater.
,
40
(
10
), pp.
1191
1198
.
21.
Dao
,
M.
,
Chollacoop
,
N.
,
Vliet
,
K. J. V.
,
Venkatesh
,
T. A.
, and
Suresh
,
S.
,
2001
, “
Computational Modeling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,”
Acta Mater.
,
49
, pp.
3899
3918
.
22.
Grogoriev, I. S., and Meilikhov, E. Z., 1997, Handbook of Physical Quantities, New York, CRC Press, pp. 49.
23.
Srivatsan
,
T. S.
,
Ravi
,
B. G.
,
Naruka
,
A. S.
,
Riester
,
L.
,
Yoo
,
S.
, and
Sudarshan
,
T. S.
,
2000
, “
A Study of Microstructure and Hardness of Bulk Copper Sample Obtained by Consolidating Nanocrystalline Powders Using Plasma Pressure Compaction
,”
Materials Science and Engineering A
,
311
, pp.
22
27
.
24.
Antunes
,
J. M.
,
Cavaleiro
,
A.
,
Menezes
,
L. F.
,
Simoes
,
M. I.
, and
Fernandes
,
J. V.
,
2002
, “
Ultramicrohardness Testing Procedure with Vickers Indenter
,”
Surf. Coat. Technol.
,
149
, pp.
27
35
.
25.
Hutchinson
,
J. W.
,
2000
, “
Plasticity at the Micron Scale
,”
Int. J. Solids Struct.
,
37
, pp.
225
238
.
26.
Narayan
,
J.
,
Sharma
,
A. K.
,
Kvit
,
A.
,
Kumar
,
D.
, and
Muth
,
J. F.
,
2000
, “
Novel Nanocrystalline Materials by Pulsed Laser Deposition
,”
Mat. Res. Soc. Symp.
,
617
, pp.
1
6
.
You do not currently have access to this content.