Finish milling with a ball end mill is a key process in manufacturing high-precision and complex workpieces, such as dies and molds. Because of the complexity of the milling process, it is difficult to evaluate the microcharacteristics of machined surfaces real time, which necessitates the simulation of the process. In this area, the existing related simulation researches mainly focus on scallop height evaluation, but few have presented a whole picture of the microcharacteristics of milled surfaces. This paper develops a comprehensive simulation system based on a Z-map model for predicting surface topographic features and roughness formed in the finish milling process and studies the effect of machining parameters. The adoption of the discretization concept of the tool’s cutting motion makes it possible to dynamically track the cutting tool-workpiece interaction with the tool movement and to describe the cutting edges-workpiece discrete cutting interaction more realistically and, therefore, the microcharacteristics of the machined surfaces more accurately. Also, the effects of the cutting tool run-out and wear are incorporated into the developed model through modifying the tool center motion and the cutting-edge shape, respectively. As a fundamental study, the tool-swept envelope has been simulated. The developed simulation system is applied to thoroughly study the surface features formed by the 2.5-axis finish milling process. The application for general three-axis machining is discussed. Additionally, this paper studies the effect of the tool inclination, which is the most common characteristic in 3+2- or five-axis milling processes, on the machined surface features. Experiments are carried out to study the milling process and to verify the simulation results. The difference between the simulated and experimental results is discussed, and the reason behind the difference is explored.

1.
Altan
,
T.
,
Lilly
,
B. W.
,
Kruth
,
J. P.
,
Konig
,
W.
,
Tonshoff
,
H. K.
,
van Luttervelt
,
C. A.
, and
Khairy
,
A. B.
, 1993, “
Advanced Techniques for Die and Mold Manufacturing
,”
CIRP Ann.
0007-8506
42
(
2
), pp.
707
716
.
2.
Shaw
,
M. C.
,
Cook
,
N. H.
, and
Smith
,
P. A.
, 1952, “
The Mechanics of Three-Dimensional Cutting Operations
,”
Trans. ASME
0097-6822,
74
, pp.
1055
1064
.
3.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Lindberg
,
J. R.
, 1982, “
The Prediction of Cutting Forces in End Milling With Application to Cornering Cuts
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
22
, pp.
7
22
.
4.
Kline
,
W. A.
, and
DeVor
,
R. E.
, 1983, “
The Effect of Run-Out on Cutting Geometry and Forces in End Milling
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
23
, pp.
123
140
.
5.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Shareef
,
I. A.
, 1982, “
The Prediction of Surface Accuracy in End Milling
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
272
278
.
6.
Ehmann
,
K. F.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Lazoglu
,
I.
, 1999, “
Machining Process Modeling: A Review
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
119
, pp.
655
663
.
7.
Lazoglu
,
I.
, and
Liang
,
S. Y.
, 2000, “
Modeling of Ball-End Milling Forces With Cutter Axis Inclination
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
3
11
.
8.
Zhu
,
R.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
, 2001, “
Mechanistic Modeling of the Ball-End Milling Process for Multi-Axis Machining of Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
369
379
.
9.
Stori
,
J. A.
, and
Wright
,
P. K.
, 2001, “
Parameter Space Decomposition for Selection of the Axial and Radial Depth of Cut in End Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
654
664
.
10.
Wang
,
W. P.
, and
Wang
,
K. K.
, 1986, “
Geometric Modeling for Swept Volume of Moving Solids
,”
IEEE Comput. Graphics Appl.
0272-1716,
6
, pp.
8
17
.
11.
Wang
,
W. P.
, 1988, “
Application of Solid Modeling to Automate Machining Parameters for Complex Parts
,”
J. Manuf. Syst.
0278-6125,
17
(
1
), pp.
57
63
.
12.
Hook
,
T. V.
, 1986, “
Real-Time Shaded NC Milling Display
,”
Proc. ACM
,
20
(
4
), pp.
15
20
.
13.
Huang
,
Y. C.
, and
Oliver
,
J. H.
, 1995, “
Integrated Simulation, Error Assessment and Tool Path Correction for Five-Axis NC Milling
,”
J. Manuf. Syst.
0278-6125,
14
(
5
), pp.
331
344
.
14.
Tsai
,
M. D.
,
Takata
,
S.
,
Inui
,
M.
,
Kimura
,
F.
, and
Sata
,
T.
, 1990, “
Prediction of Chatter Vibration by Means of a Model Based Cutting Simulation System
,”
CIRP Ann.
0007-8506,
39
(
1
), pp.
447
450
.
15.
Fussell
,
B. K.
,
Jerard
,
R. B.
, and
Hemmett
,
J. G.
, 2001, “
Robust Feedrate Selection for 3-Axis NC Machining Using Discrete Models
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
, pp.
214
224
.
16.
Anderson
,
R. O.
, 1978, “
Detecting and Eliminating Collision in NC Machining
,”
Comput.-Aided Des.
0010-4485,
10
(
2
), pp.
231
237
.
17.
Kim
,
G. M.
,
Cho
,
P. J.
, and
Chu
,
C. N.
, 2000, “
Cutting Force Prediction of Sculptured Surface Ball End Milling Using Z-Map
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
277
291
.
18.
Yazar
,
Z.
,
Koch
,
K. F.
,
Merrick
,
T.
, and
Altan
,
T.
, 1994, “
Feedrate Optimization Based on Cutting Force Calculations in 3-Axis Milling of Dies and Molds With Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
34
, pp.
365
377
.
19.
Choi
,
B. K.
,
Kim
,
D. H.
, and
Jerard
,
R. B.
, 1997, “
C-Space Approach to Tool Path Generation for Die and Mould Machining
,”
Comput.-Aided Des.
0010-4485,
29
(
9
), pp.
657
669
.
20.
Lee
,
S.
, and
Ko
,
S.
, 2002, “
Development of Simulation System for Machining Process Using Enhanced Z Map Model
,”
J. Mater. Process. Technol.
0924-0136,
130-131
, pp.
608
617
.
21.
Lee
,
H. U.
, and
Cho
,
D.
, 2003, “
Accurate Milling Process Simulation Using ME Z-Map Model
,”
Proceedings of IMECE’03
,
ASME
,
New York
, pp.
1
7
.
22.
Kim
,
B. H.
, and
Chu
,
C. N.
, 1994, “
Effect of Cutter Mark on Surface Roughness and Scallop Height in Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
26
(
3
), pp.
179
188
.
23.
Kim
,
B. H.
, and
Chu
,
C. N.
, 1999, “
Texture Prediction of Milled Surfaces Using Texture Superposition Method
,”
Comput.-Aided Des.
0010-4485,
31
, pp.
485
494
.
24.
Campomanes
,
M. L.
, and
Altintas
,
Y.
, 2003, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
416
422
.
25.
Yang
,
M.
, and
Park
,
H.
, 1991, “
The Prediction of Cutting Force in Ball End Milling
,”
0020-7357,
31
, pp.
45
54
.
26.
Yucesan
,
G.
, and
Altintas
,
Y.
, 1996, “
Prediction of Ball End Milling Forces
,”
ASME J. Eng. Ind.
0022-0817,
118
, pp.
95
103
.
27.
Koreta
,
N.
,
Zhao
,
X.
, and
Kubo
,
K.
, 2002, “
Optimum Tilting Direction and Angle of Tool for Surface Roughness in Ball-End Milling
,”
6th International Conference on Progress of Machining Technology
, pp.
476
481
.
28.
Antoniadis
,
A.
, 2001, “
Simulation of Milled Surface Topomorphy
,”
ACM Trans. Model. Comput. Simul.
1049-3301,
21
(
4
) pp.
271
274
.
29.
Sarma
,
R.
, 2000, “
Flat-Ended Tool Swept Sections for Five-Axis NC Machining of Sculptured Surfaces
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
158
165
.
30.
Armarego
,
E. J. A.
, and
Deshpande
,
N. P.
, 1991, “
Computerized End-Milling Force Prediction With Cutting Models Allowing for Eccentricity and Cutter Deflections
,”
CIRP Ann.
0007-8506,
40
(
1
), pp.
25
29
.
31.
Yun
,
W.
,
Cho
,
D.
, and
Ehmann
,
K. F.
, 1999, “
Determination of Constant 3D Cutting Force Coefficients and of Run-Out Parameters in End Milling
,”
Trans. NAMRC/SME
1047-3025,
XXVII
, pp.
87
92
.
32.
Kline
,
W. A.
,
DeVor
,
R. E.
, and
Shareef
,
I. A.
, 1982, “
The Prediction of Surface Accuracy in End Milling
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
272
278
.
33.
Dong
,
W. P.
,
Mainsah
,
E.
and
Stout
,
K. J.
, 1995, “
Reference Planes for the Assessment of Surface Roughness in Three Dimensions
,”
Int. J. Mach. Tools Manuf.
0890-6955,
35
(
2
), pp.
263
271
.
34.
Choi
,
B.
, and
Jerard
,
R.
, 1998,
Sculptured Surface Machining-Theory and Application
,
Kluwer
, Dordrecht.
35.
Ko
,
T. J.
,
Kim
,
H. S.
, and
Lee
,
S. S.
, 2001, “
Selection of the Machining Inclination Angle in High-Speed Ball End Milling
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
17
, pp.
163
170
.
You do not currently have access to this content.