Introduction of compressive residual stresses on the fatigue-loaded components is one of the techniques followed to improve the fatigue life of industrial components. Oil jet peening is a surface modification process for the introduction of compressive residual stresses. A high-pressure oil jet is made to impinge on the surface to be peened. Preliminary studies were carried out on the medium carbon steel at the oil pressure of 50MPa. The compressive residual stress induced on the surface of unpeened and oil jet-peened AISI 1040 steel was 21MPa and 200MPa, respectively. Fully reversed cantilever bending fatigue behaviors of medium carbon steel in both under peened and unpeened conditions were evaluated at room temperature. Oil jet-peened specimens exhibited superior fatigue performance compared to the unpeened specimens. Fractographical analyses were carried out for specimens broken at several tested stress levels using optical microscope.

1.
Wang
,
S.
,
Li
,
Y.
,
Mei
,
Y.
, and
Wang
,
R.
, 1998, “
Compressive Residual Stress Induced by Shot Peening
,”
J. Mater. Process. Technol.
0924-0136,
73
, pp.
64
73
.
2.
Salko
,
D.
, 1984, “
Peening by Water
,”
Proc. of 2nd ICSP
,
American Shot Peening Society
,
Chicago, IL
, pp.
37
38
.
3.
Daniewicz
,
S. R.
, and
Commings
,
S. D.
, 1999, “
Characterization of a Water Peening Process
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
336
340
.
4.
Odhiambo
,
D.
, and
Soyama
,
H.
, 2003, “
Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel
,”
Int. J. Fatigue
0142-1123,
25
, pp.
1217
1222
.
5.
Odhiambo
,
D.
, and
Soyama
,
H.
, 2003, “
Cavitation Shot Less Peening for Improvement of Fatigue Strength of Carbonized Steel
,”
Int. J. Fatigue
0142-1123,
25
, pp.
1217
1222
.
6.
Pai.
,
R.
, and
Hargreaves
,
D. J.
, 2002, “
Performance of Environment Friendly Hydraulic Fluids and Material Wear in Cavitating Conditions
,”
Wear
0043-1648,
252
, pp.
970
978
.
7.
Talks
,
M. G.
, and
Moreton
,
G.
, 1981, “
Cavitation Erosion of Fire Resistant Hydraulic Fluid
,”
Proc. ASME Symp. Cavitation. Erosion Fluid Sys.
,
ASME
,
New York
, pp.
139
152
.
8.
Tsujino
,
T.
,
Shima
,
A.
, and
Oikawa
,
Y.
, 1990, “
Cavitation Damage and Generated Noise in High Water Base Fluids
,”
Trans. JSME, Ser. B.
,
56
(
532
), pp.
3592
3596
.
9.
Sahaya Grinspan
,
A.
, and
Gnanamoorthy
,
R.
, 2006, “
A Novel Surface Modification Technique for the Introduction Compressive Residual Stress and Preliminary Studies on Aluminum Alloy AA6063
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
1768
1775
.
10.
Sahaya Grinspan
,
A.
, and
Gnanamoorthy
,
R.
, 2006, “
Surface Modification by Oil Jet Peening in Aluminum Alloys AA6063-T6 and AA601-T4: Mathematical Modeling, Residual Stress and Hardness
,”
Appl. Surf. Sci.
0169-4332,
253
, pp.
989
996
.
11.
Sahaya Grinspan
,
A.
, and
Gnanamoorthy
,
R.
, 2006, “
Surface Modification by Oil Jet Peening in Aluminum Alloys AA6063-T6 and AA601-T4: Surface Morphology, Erosion and Mass loss
,”
Appl. Surf. Sci.
0169-4332,
253
, pp.
997
1006
.
12.
Rigaku,
Instruction Manual
,
Rigaku Strain Flex-X-Ray Stress Analyzer
,
Rigaku Corp.
,
Japan
.
13.
Cullity
,
B. D.
, 1978,
Element of X-Ray Diffraction
,
Addision-Wesley
.
14.
Aerospace Material Specification
, 1993, AMS 2439L, SAE, United States.
15.
Aerospace Material Specification
, 1997, AMS -S-13165, SAE, United States.
16.
Puenteleon
,
F.
, 2001,
Determination of the Coverage of Shot Peened Surface
,
WIT Press
,
UK.
, Surface Treatment V, pp.
323
332
.
17.
Xiaoling
,
L.
, 1991, “
Surface Strengthening of Metals by Water Jet
,”
6th American Water Jet Conference
, Texas, pp.
637
646
.
18.
Tekeli
,
S.
, 2002, “
Enhancement of Fatigue Strength of SAE 9245 Steel by Shot Peening
,”
Mater. Lett.
0167-577X,
57
, pp.
604
608
.
19.
Tonshoff
,
H. K.
,
Kroos.
,
F.
, and
Marzenell
,
C.
, 1997, “
High Pressure Water Peening—A New Mechanical Surface Strengthening Process
,”
CIRP Ann.
0007-8506,
16
, pp.
113
116
.
20.
Kunaporn
,
S.
,
Ramulu
,
M.
,
Jenkins
,
M. G.
, and
Hashish
,
M.
, 2004, “
Residual Stress Induced by Water Jet Peening: A Finite Element Analysis
,”
ASME J. Pressure Vessel Technol.
0094-9930,
126
, pp.
333
340
.
21.
Hammond
,
D. W.
, and
Meguid
,
S. A.
, 1990, “
Crack Propagation in the Presence of Shot Peening Residual Stress
,”
Eng. Fract. Mech.
0013-7944,
37
, pp.
373
387
.
22.
Soyama
,
H.
, and
Macodiyo
,
D.
, 2003, “
Improvement of Fatigue Strength of Stainless Steel by Cavitation Jet in Air
,”
5th Int. Symposium on Cavitation-CAV2003
, Osaka, Japan, pp.
1
4
.
23.
Ramulu
,
M.
,
Kunaporn
,
S.
,
Jenkins
,
M.
,
Hashish
,
M.
, and
Hopkins
,
J.
, 2002, “
Fatigue Performance of High-Pressure Water Jet Peened Aluminum Alloy
,”
ASME J. Pressure Vessel Technol.
0094-9930,
124
, pp.
118
123
.
24.
de los Rios
,
E. R.
,
Walley
,
A.
,
Milan
,
M. T.
, and
Hammersley
,
G.
, 1995, “
Fatigue Crack Initiation and Propagation on Shot Peened Surface in A316 Stainless Steel
,”
Int. J. Fatigue
0142-1123,
17
, pp.
493
499
.
You do not currently have access to this content.