Maintenance decision-making has emerged as an important area of industrial research. Over the past two decades, maintenance policies have evolved from simple reactive maintenance to complex versions of condition-based maintenance (CBM). A quantitative description of a machine’s health, as found in CBM, is essential to plan maintenance effectively as it helps avoid excessive or insufficient maintenance. In spite of several advancements in the degradation monitoring techniques, most CBM decision-making methods still focus on a single machine system. Maintenance analysis of a single machine provides good insights, but lacks practical applications. In this paper, we develop a continuous time Markov chain degradation model and a cost model to quantify the effects of maintenance on a multiple machine system. An optimal maintenance policy for a multiple machine system in the absence of resource constraints is obtained. In the presence of resource constraints, two prioritization methods are proposed to obtain effective maintenance policies for a multiple machine system. A case study focusing on a section of an automotive assembly line is used to illustrate the effectiveness of the proposed method.

1.
Zeng
,
S. W.
, 1997, “
Discussion on Maintenance Strategy, Policy and Corresponding Maintenance Systems in Manufacturing
,”
Reliab. Eng. Syst. Saf.
0951-8320,
55
(
2
), pp.
151
162
.
2.
Lyonnet
,
P.
, 1991,
Maintenance Planning: Methods and Mathematics
,
Chapman and Hall
,
London
.
3.
Dekker
,
R.
, 1996, “
Applications of Maintenance Optimization Models: A Review and Analysis
,”
Reliab. Eng. Syst. Saf.
0951-8320,
51
, pp.
229
240
.
4.
Ben-Daya
,
M.
,
Duffuaa
,
S. O.
, and
Raouf
,
A.
, 2000,
Maintenance, Modeling and Optimization
,
Kluwer
,
Dordrecht
.
5.
Wang
,
H. -Z.
, 2002, “
A Survey of Maintenance Policies of Deteriorating Systems
,”
Eur. J. Oper. Res.
0377-2217,
139
, pp.
469
489
.
6.
Yang
,
Z.
,
Djurdjanovic
,
D.
, and
Ni
,
J.
, 2008, “
Maintenance Scheduling in Manufacturing Systems Based on Predictive Machine Degradation
,”
J. Intell. Manuf.
0956-5515
19
(
1
), pp.
87
98
.
7.
Marseguerra
,
M.
,
Zio
,
E.
, and
Podofillini
,
L.
, 2002, “
Condition Based Optimization by Means of Genetic Algorithms and Monte Carlo Simulation
,”
Reliab. Eng. Syst. Saf.
0951-8320,
67
(
3
), pp.
215
232
.
8.
Grall
,
A.
,
Berenguer
,
C.
, and
Dieulle
,
L.
, 2002, “
A Condition-Based Maintenance Policy for Stochastically Deteriorating Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
76
(
2
), pp.
167
180
.
9.
Amari
,
S. V.
,
McLaughlin
,
L.
, and
Pham
,
H.
, 2006, “
Cost-Effective Condition-Based Maintenance Using Markov Decision Process
,”
Reliability and Maintainability Symposium 2006
.
10.
Chan
,
G. K.
, and
Asgarpoor
,
S.
, 2006, “
Optimum Maintenance Policy With Markov Process
,”
Electr. Power Syst. Res.
0378-7796,
76
, pp.
452
456
.
11.
Jamali
,
M. A.
,
Ait-Kadi
,
D.
,
Cleroux
,
R.
, and
Artiba
,
A.
, 2005, “
Joint Optimal Periodic and Conditional Maintenance Strategy
,”
J. Qual. Maint. Eng.
1355-2511,
11
(
2
), pp.
107
114
.
12.
Chen
,
D.
, and
Trivedi
,
K.
, 2002, “
Closed-Form Analytical Results for Condition-Based Maintenance
,”
Reliab. Eng. Syst. Saf.
0951-8320,
76
, pp.
43
51
.
13.
Saranga
,
H.
, and
Knezevic
,
J.
, 2001, “
Reliability Prediction for Condition-Based Maintained Systems
,”
Reliab. Eng. Syst. Saf.
0951-8320,
71
(
2
), pp.
219
224
.
14.
Barbera
,
F.
,
Schneider
,
H.
, and
Watson
,
E.
, 1999, “
A Condition Based Maintenance Model for a Two-Unit Series System
,”
Eur. J. Oper. Res.
0377-2217,
116
(
2
), pp.
281
290
.
15.
Luce
,
S.
, 1999, “
Choice Criteria in Conditional Preventive Maintenance
,”
Mech. Syst. Signal Process.
0888-3270,
13
(
1
), pp.
163
8
.
16.
Heng
,
A.
,
Zhang
,
S.
,
Tan
,
A. C. C.
, and
Mathew
,
J.
, 2009, “
Rotating Machinery Prognostics: State of the Art, Challenges and Opportunities
,”
Mech. Syst. Signal Process.
0888-3270,
23
, pp.
724
739
.
17.
Kirianaki
,
N. V.
,
Yurish
,
S. Y.
,
Shpak
,
N. O.
, and
Deynega
,
V. P.
, 2002,
Data Acquisition and Signal Processing for Smart Sensors
,
Wiley
,
Chichester
.
18.
Lu
,
S.
,
Tu
,
Y. -C.
, and
Lu
,
H.
, 2007, “
Predictive Condition-Based Maintenance for Continuously Deteriorating Systems
,”
Qual. Reliab. Eng. Int.
,
23
(
1
), pp.
71
81
. 0748-8017
19.
Dieulle
,
L.
,
Berenguer
,
C.
,
Grall
,
A.
, and
Roussingnol
,
M.
, 2003, “
Sequential Condition-Based Maintenance Scheduling for a Deteriorating System
,”
Eur. J. Oper. Res.
0377-2217,
150
(
2
), pp.
451
461
.
20.
Barlow
,
R.
, and
Hunter
,
L.
, 1960, “
Optimal Preventive Maintenance Policies
,”
Oper. Res.
0030-364X,
8
, pp.
90
100
.
21.
Sheu
,
S. H.
,
Yeh
,
R. H.
,
Lin
,
Y. B.
, and
Juang
,
M. G.
, 2001, “
A Bayesian Approach to an Adaptive Preventive Maintenance Model
,”
Reliab. Eng. Syst. Saf.
0951-8320,
71
, pp.
33
44
.
22.
Sim
,
S. H.
, and
Endrenyi
,
J.
, 1993, “
A Failure-Repair Model With Minimal and Major Maintenance
,”
IEEE Trans. Reliab.
0018-9529,
42
(
1
), pp.
134
140
.
23.
Sim
,
S. H.
, and
Endrenyi
,
J.
, 1988, “
Optimal Preventive Maintenance With Repair
,”
IEEE Trans. Reliab.
0018-9529,
37
(
1
), pp.
92
96
.
24.
Chen
,
H.
, and
Yao
,
D. D.
, 2001,
Fundamentals of Queuing Networks: Performance, Asymptotics, and Optimization
,
Springer
,
New York
.
25.
Bose
,
S. K.
, 2002,
An Introduction to Queuing Systems
,
Springer
,
New York
.
26.
Yang
,
Z.
,
Chang
,
Q.
,
Djurdjanovic
,
D.
,
Ni
,
J.
, and
Lee
,
J.
, 2007, “
Maintenance Priority Assignment Utilizing On-Line Production Information
,”
ASME J. Manuf. Sci. Eng
.,
129
, pp.
435
446
. 1087-1357
27.
Ross
,
S.
, 1997,
Introduction to Probability Models
,
Academic
,
New York
.
You do not currently have access to this content.