Abstract

The rapidly growing deployment of lithium-ion batteries in electric vehicles is associated with a great waste of natural resource and environmental pollution caused by manufacturing and disposal. Repurposing the retired lithium-ion batteries can extend their useful life, creating environmental and economic benefits. However, the residual capacity of retired lithium-ion batteries is unknown and can be drastically different owing to various working history and calendar life. In this study, we used the incremental capacity (IC) curve to estimate the residual capacity of waste power batteries. First, through experimental means, the parameters of the battery and the IC charging curve are measured. Second, to achieve rapid capacity estimation, a battery capacity estimation method based on the adaptive genetic algorithm-back propagation neural network (AGA-BPNN) is proposed and compared with other classic machine learning methods. The proposed algorithm reduced the error of capacity estimation to 3%. Finally, through the analysis of the IC curve, a method for identifying aging mechanism of large-scale decommissioned batteries is obtained. This research provides effective support for the capacity-based classification of large-scale decommissioned power batteries.

References

1.
Lave
,
L.
,
Maclean
,
H.
,
Hendrickson
,
C.
, and
Lankey
,
R.
,
2000
, “
Life-Cycle Analysis of Alternative Automobile Fuel/Propulsion Technologies
,”
Environ. Sci. Technol.
,
34
(
17
), pp.
3598
3605
.
2.
McGlade
,
C.
, and
Ekins
,
P.
,
2015
, “
The Geographical Distribution of Fossil Fuels Unused When Limiting Global Warming to 2 Degrees C
,”
Nature
,
517
(
7533
), pp.
143
187
.
3.
Chiari
,
L.
, and
Zecca
,
A.
,
2011
, “
Constraints of Fossil Fuels Depletion on Global Warming Projections
,”
Energy Policy
,
39
(
9
), pp.
5026
5034
.
4.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
, and
Mohamed
,
A.
,
2017
, “
A Review of Lithium-Ion Battery State of Charge Estimation and Management System in Electric Vehicle Applications: Challenges and Recommendations
,”
Renewable Sustainable Energy Rev.
,
78
(
1
), pp.
834
854
.
5.
Hannan
,
M. A.
,
Hoque
,
M. M.
,
Hussain
,
A.
,
Yusof
,
Y.
, and
Ker
,
P. J.
,
2018
, “
State-of-the-Art and Energy Management System of Lithium-Ion Batteries in Electric Vehicle Applications: Issues and Recommendations
,”
IEEE Access
,
6
(
1
), pp.
19362
19378
.
6.
Zeng
,
X.
,
Li
,
M.
,
Abd El-Hady
,
D.
,
Alshitari
,
W.
,
Al-Bogami
,
A. S.
,
Lu
,
J.
, and
Amine
,
K.
,
2019
, “
Commercialization of Lithium Battery Technologies for Electric Vehicles
,”
Adv. Energy Mater.
,
9
(
1
), p.
190016127
.
7.
Bobba
,
S.
,
Mathieux
,
F.
, and
Blengini
,
G. A.
,
2019
, “
How Will Second-Use of Batteries Affect Stocks and Flows in the EU? A Model for Traction Li-Ion Batteries
,”
Resour. Conserv. Recycl.
,
145
(
1
), pp.
279
291
.
8.
Ferella
,
F.
,
De Michelis
,
I.
, and
Veglio
,
F.
,
2008
, “
Process for the Recycling of Alkaline and Zinc-Carbon Spent Batteries
,”
J. Power Sources
,
183
(
2
), pp.
805
811
.
9.
Charef
,
S. A.
,
Affoune
,
A. M.
,
Caballero
,
A.
,
Cruz-Yusta
,
M.
, and
Morales
,
J.
,
2017
, “
Simultaneous Recovery of Zn and Mn From Used Batteries in Acidic and Alkaline Mediums: A Comparative Study
,”
Waste Manage.
,
68
(
1
), pp.
518
526
.
10.
Zhang
,
X.
,
Li
,
L.
,
Fan
,
E.
,
Xue
,
Q.
,
Bian
,
Y.
,
Wu
,
F.
, and
Chen
,
R.
,
2018
, “
Toward Sustainable and Systematic Recycling of Spent Rechargeable Batteries
,”
Chem. Soc. Rev.
,
47
(
19
), pp.
7239
7302
.
11.
Neubauer
,
J.
, and
Pesaran
,
A.
,
2011
, “
The Ability of Battery Second Use Strategies to Impact Plug-In Electric Vehicle Prices and Serve Utility Energy Storage Applications
,”
J. Power Sources
,
196
(
23
), pp.
10351
10358
.
12.
Alimisis
,
V.
, and
Hatziargyriou
,
N. D.
,
2013
, “
Evaluation of a Hybrid Power Plant Comprising Used EV-Batteries to Complement Wind Power
,”
IEEE Trans. Sustainable Energy
,
4
(
2
), pp.
286
293
.
13.
Heymans
,
C.
,
Walker
,
S. B.
,
Young
,
S. B.
, and
Fowler
,
M.
,
2014
, “
Economic Analysis of Second Use Electric Vehicle Batteries for Residential Energy Storage and Load-Levelling
,”
Energy Policy
,
71
(
1
), pp.
22
30
.
14.
Cusenza
,
M. A.
,
Guarino
,
F.
,
Longo
,
S.
,
Mistretta
,
M.
, and
Cellura
,
M.
,
2019
, “
Reuse of Electric Vehicle Batteries in Buildings: An Integrated Load Match Analysis and Life Cycle Assessment Approach
,”
Energy Build.
,
186
(
1
), pp.
339
354
.
15.
Debnath
,
U. K.
,
Ahmad
,
I.
, and
Habibi
,
D.
,
2014
, “
Quantifying Economic Benefits of Second Life Batteries of Gridable Vehicles in the Smart Grid
,”
Int. J. Electr. Power Energy Syst.
,
63
(
1
), pp.
577
587
.
16.
Hua
,
Y.
,
Zhou
,
S.
,
Huang
,
Y.
,
Liu
,
X.
,
Ling
,
H.
,
Zhou
,
X.
,
Zhang
,
C.
, and
Yang
,
S.
,
2020
, “
Sustainable Value Chain of Retired Lithium-Ion Batteries for Electric Vehicles
,”
J. Power Sources
,
478
(
1
), p.
228753
.
17.
Song
,
L.
,
Liang
,
T.
,
Lu
,
L.
, and
Ouyang
,
M.
,
2020
, “
Lithium-Ion Battery Pack Equalization Based On Charging Voltage Curves
,”
Int. J. Electr. Power Energy Syst.
,
115
(
1
), p.
105516
.
18.
Hua
,
Y.
,
Zhou
,
S.
,
Cui
,
H.
,
Liu
,
X.
,
Zhang
,
C.
,
Xu
,
X.
,
Ling
,
H.
, and
Yang
,
S.
,
2020
, “
A Comprehensive Review on Inconsistency and Equalization Technology of Lithium-Ion Battery for Electric Vehicles
,”
Int. J. Energy Res
,
44
(
14
), pp.
11059
11087
.
19.
Liu
,
X.
,
Ai
,
W.
,
Marlow
,
M. N.
,
Patel
,
Y.
, and
Wu
,
B.
,
2019
, “
The Effect of Cell-to-Cell Variations and Thermal Gradients on the Performance and Degradation of Lithium-Ion Battery Packs
,”
Appl. Energy
,
248
(
1
), pp.
489
499
.
20.
Lai
,
X.
,
Qiao
,
D.
,
Zheng
,
Y.
, and
Yi
,
W.
,
2018
, “
A Novel Screening Method Based on a Partially Discharging Curve Using a Genetic Algorithm and Back-Propagation Model for the Cascade Utilization of Retired Lithium-Ion Batteries
,”
Electronics
,
7
(
1
), p.
39912
.
21.
Tian
,
H.
,
Qin
,
P.
,
Li
,
K.
, and
Zhao
,
Z.
,
2020
, “
A Review of the State of Health for Lithium-Ion Batteries: Research Status and Suggestions
,”
J. Cleaner Prod.
,
261
(
1
), p.
120813
.
22.
Ungurean
,
L.
,
Carstoiu
,
G.
,
Micea
,
M. V.
, and
Groza
,
V.
,
2017
, “
Battery State of Health Estimation: A Structured Review of Models, Methods and Commercial Devices
,”
Int. J. Energy Res.
,
41
(
2
), pp.
151
181
.
23.
Ng
,
K. S.
,
Moo
,
C.
,
Chen
,
Y.
, and
Hsieh
,
Y.
,
2009
, “
Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lithium-Ion Batteries
,”
Appl. Energy
,
86
(
9
), pp.
1506
1511
.
24.
Kong-Soon
,
N.
,
Yao-Feng
,
H.
,
Chin-Sien
,
M.
, and
Yao-Ching
,
H.
,
2009
, “
An Enhanced Coulomb Counting Method for Estimating State-of-Charge and State-of-Health of Lead-Acid Batteries
,”
31st International Telecommunications Energy Conference
,
Incheon, South Korea
,
Oct. 18–22
, IEEE, vol. 5.
25.
Wang
,
Y.
,
Tian
,
J.
,
Sun
,
Z.
,
Wang
,
L.
,
Xu
,
R.
,
Li
,
M.
, and
Chen
,
Z.
,
2020
, “
A Comprehensive Review of Battery Modeling and State Estimation Approaches for Advanced Battery Management Systems
,”
Renewable Sustainable Energy Rev.
,
131
(
1
), p.
110015
.
26.
Remmlinger
,
J.
,
Buchholz
,
M.
,
Meiler
,
M.
,
Bernreuter
,
P.
, and
Dietmayer
,
K.
,
2011
, “
State-of-Health Monitoring of Lithium-Ion Batteries in Electric Vehicles by On-Board Internal Resistance Estimation
,”
J. Power Sources
,
196
(
12
), pp.
5357
5363
.
27.
Waag
,
W.
, and
Sauer
,
D. U.
,
2013
, “
Adaptive Estimation of the Electromotive Force of the Lithium-Ion Battery After Current Interruption for an Accurate State-of-Charge and Capacity Determination
,”
Appl. Energy
,
111
(
1
), pp.
416
427
.
28.
Li
,
J.
,
Gu
,
Y.
,
Wang
,
L.
, and
Wu
,
X.
,
2019
, “
A Review on State of Health Estimation of Retired Lithium-Ion Batteries
,”
Energy Storage Sci. Technol.
,
8
(
05
), pp.
807
812
.
29.
Widodo
,
A.
,
Shim
,
M.
,
Caesarendra
,
W.
, and
Yang
,
B.
,
2011
, “
Intelligent Prognostics for Battery Health Monitoring Based on Sample Entropy
,”
Expert Syst. Appl.
,
38
(
9
), pp.
11763
11769
.
30.
Dong
,
H.
,
Jin
,
X.
,
Lou
,
Y.
, and
Wang
,
C.
,
2014
, “
Lithium-Ion Battery State of Health Monitoring and Remaining Useful Life Prediction Based on Support Vector Regression-Particle Filter
,”
J. Power Sources
,
271
(
1
), pp.
114
123
.
31.
Klass
,
V.
,
Behm
,
M.
, and
Lindbergh
,
G.
,
2014
, “
A Support Vector Machine-Based State-of-Health Estimation Method for Lithium-Ion Batteries Under Electric Vehicle Operation
,”
J. Power Sources
,
270
(
1
), pp.
262
272
.
32.
Chen
,
H.
, and
Shen
,
J.
,
2017
, “
A Degradation-Based Sorting Method for Lithium-Ion Battery Reuse
,”
PLoS One
,
12
(
1
), p.
e018592210
.
33.
Li
,
H.
, and
Zhou
,
Z.
,
2019
, “
Numerical Simulation and Experimental Study of Fluid-Solid Coupling-Based Air-Coupled Ultrasonic Detection of Stomata Defect of Lithium-Ion Battery
,”
Sensors
,
19
(
1
), p.
239110
.
34.
Dubarry
,
M.
, and
Liaw
,
B. Y.
,
2009
, “
Identify Capacity Fading Mechanism in a Commercial LiFePO4 Cell
,”
J. Power Sources
,
194
(
1
), pp.
541
549
.
35.
Weng
,
C.
,
Cui
,
Y.
,
Sun
,
J.
, and
Peng
,
H.
,
2013
, “
On-Board State of Health Monitoring of Lithium-Ion Batteries Using Incremental Capacity Analysis With Support Vector Regression
,”
J. Power Sources
,
235
(
1
), pp.
36
44
.
36.
Riviere
,
E.
,
Venet
,
P.
,
Sari
,
A.
,
Meniere
,
F.
, and
Bultel
,
Y.
,
2015
, “
LiFePO4 Battery State of Health Online Estimation Using Electric Vehicle Embedeed Incremental Capacity Analysis
,”
IEEE Vehicle Power and Propulsion Conference
,
Montreal, QC, Canada
,
Oct. 19–22
.
37.
Li
,
X.
,
Jiang
,
J.
,
Wang
,
L. Y.
,
Chen
,
D.
,
Zhang
,
Y.
, and
Zhang
,
C.
,
2016
, “
A Capacity Model Based on Charging Process for State of Health Estimation of Lithium Ion Batteries
,”
Appl. Energy
,
177
(
1
), pp.
537
543
.
38.
Han
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
,
Zheng
,
Y.
, and
Li
,
Z.
,
2014
, “
A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electrical Vehicle: Aging Mechanism Identification
,”
J. Power Sources
,
251
(
1
), pp.
38
54
.
39.
Yoshida
,
T.
,
Takahashi
,
M.
,
Morikawa
,
S.
,
Ihara
,
C.
,
Katsukawa
,
H.
,
Shiratsuchi
,
T.
, and
Yamaki
,
J.
,
2006
, “
Degradation Mechanism and Life Prediction of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
153
(
3
), pp.
A576
82
.
40.
Jiang
,
Y.
,
Jiang
,
J.
,
Zhang
,
C.
,
Zhang
,
W.
,
Gao
,
Y.
, and
Guo
,
Q.
,
2017
, “
Recognition of Battery Aging Variations for LiFePO4 Batteries in 2Nd Use Applications Combining Incremental Capacity Analysis and Statistical Approaches
,”
J. Power Sources
,
360
(
1
), pp.
180
188
.
41.
Ma
,
Z.
,
Wang
,
Z.
,
Xiong
,
R.
, and
Jiang
,
J.
,
2018
, “
A Mechanism Identification Model Based State-of-Health Diagnosis of Lithium-Ion Batteries for Energy Storage Applications
,”
J. Cleaner Prod.
,
193
(
1
), pp.
379
390
.
42.
Ma
,
Z.
,
Jiang
,
J.
,
Shi
,
W.
,
Zhang
,
W.
, and
Mi
,
C. C.
,
2015
, “
Investigation of Path Dependence in Commercial Lithium-Ion Cells for Pure Electric Bus Applications: Aging Mechanism Identification
,”
J. Power Sources
,
274
(
1
), pp.
29
40
.
You do not currently have access to this content.