Abstract

Dopamine is critical for the physiological function and plays a crucial role in the discovery of neurological disorders such as Parkinson's disease. Improving the measurement of this neurotransmitter could improve treatment, diagnosis, and prognosis of neurological disorders. Graphene's outstanding biocompatibility and electrical conductivity have caused it to become a widely used material in cellular interfacing and neurotransmitter characterization. However, graphene has been rarely used to investigate cellular systems after introducing trauma. Sensing dopamine on the cellular level and on the microscale can lead to provide a point-of-care diagnostics for traumatic brain injury patients. The sensitivity of graphene biosensor to different concentrations of dopamine was evaluated in the dynamic range of 0.1–100 µM, and the limit of detection of biosensor was estimated to be 180 µM. In this work, a 3D-printed graphene biosensor was used to characterize the dopamine levels as a real-time detector of neurotransmitters. We used cyclic voltammetry (CV) to measure the response of graphene biosensors to neurotransmitter changes, in addition, to evaluate the effect of UV irradiation as the injury stimulant on the electrical properties of graphene biosensors. We demonstrated that the 3D-printed graphene could detect significant changes in the CV profiles of N27 dopaminergic neural cells cultured on the graphene device in the face of trauma.

References

1.
Senel
,
M.
,
Dervisevic
,
M.
,
Alhassen
,
S.
,
Alachkar
,
A.
, and
Voelcker
,
N. H.
,
2020
, “
Electrochemical Micropyramid Array-Based Sensor for In Situ Monitoring of Dopamine Released From Neuroblastoma Cells
,”
Anal. Chem.
,
92
(
11
), pp.
7746
7753
.
2.
Jolly
,
A. E.
,
Raymont
,
V.
,
Cole
,
J. H.
,
Whittington
,
A.
,
Scott
,
G.
,
De Simoni
,
S.
,
Searle
,
G.
,
Gunn
,
R. N.
, and
Sharp
,
D. J.
,
2019
, “
Dopamine D2/D3 Receptor Abnormalities After Traumatic Brain Injury and Their Relationship to Post-Traumatic Depression
,”
Neuroimage Clin.
,
24
, p.
101950
.
3.
Ben Ali Hassine
,
C.
,
Kahri
,
H.
, and
Barhoumi
,
H.
,
2020
, “
Enhancing Dopamine Detection Using Glassy Carbon Electrode Modified With Graphene Oxide, Nickel and Gold Nanoparticles
,”
J. Electrochem. Soc.
,
167
(
2
), p.
027516
.
4.
Suzuki
,
I.
,
Fukuda
,
M.
,
Shirakawa
,
K.
,
Jiko
,
H.
, and
Gotoh
,
M.
,
2013
, “
Carbon Nanotube Multi-Electrode Array Chips for Noninvasive Real-Time Measurement of Dopamine, Action Potentials, and Postsynaptic Potentials
,”
Biosens Bioelectron.
,
49
, pp.
270
275
.
5.
Lan
,
Y. L.
,
Li
,
S.
,
Lou
,
J. C.
,
Ma
,
X. C.
, and
Zhang
,
B.
,
2019
, “
The Potential Roles of Dopamine in Traumatic Brain Injury: A Preclinical and Clinical Update
,”
Am. J. Transl. Res.
,
11
(
5
), pp.
2616
2631
.
6.
Cannella
,
L. A.
,
Andrews
,
A. M.
,
Tran
,
F.
,
Razmpour
,
R.
,
McGary
,
H.
,
Collie
,
C.
,
Tsegaye
,
T.
,
Maynard
,
M.
,
Kaufman
,
M.J.
,
Rawls
,
S.M.
, and
Ramirez
,
S.H.
,
2020
, “
Experimental Traumatic Brain Injury During Adolescence Enhances Cocaine Rewarding Efficacy and Dysregulates Dopamine and Neuroimmune Systems in Brain Reward Substrates
,”
J. Neurotrauma
,
37
(
1
), pp.
27
42
.
7.
Rosas-Hernandez
,
H.
,
Burks
,
S. M.
,
Cuevas
,
E.
, and
Ali
,
S. F.
,
2019
, “
Stretch-Induced Deformation as a Model to Study Dopaminergic Dysfunction in Traumatic Brain Injury
,”
Neurochem. Res.
,
44
(
11
), pp.
2546
2555
.
8.
Fridman
,
E. A.
,
Osborne
,
J. R.
,
Mozley
,
P. D.
,
Victor
,
J. D.
, and
Schiff
,
N. D.
,
2019
, “
Presynaptic Dopamine Deficit in Minimally Conscious State Patients Following Traumatic Brain Injury
,”
Brain
,
142
(
7
), pp.
1887
1893
.
9.
Arumugasamy
,
S. K.
,
Govindaraju
,
S.
, and
Yun
,
K.
,
2020
, “
Electrochemical Sensor for Detecting Dopamine Using Graphene Quantum Dots Incorporated With Multiwall Carbon Nanotubes
,”
Appl. Surf. Sci.
,
508
, p.
145294
.
10.
Diab
,
N.
,
Morales
,
D. M.
,
Andronescu
,
C.
,
Masoud
,
M.
, and
Schuhmann
,
W.
,
2019
, “
A Sensitive and Selective Graphene/Cobalt Tetrasulfonated Phthalocyanine Sensor for Detection of Dopamine
,”
Sens. Actuators, B
,
285
, pp.
17
23
.
11.
Huang
,
Q. T.
,
Lin
,
X. F.
,
Tong
,
L. L.
, and
Tong
,
Q. X.
,
2020
, “
Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release From Living Cells
,”
ACS Sustain. Chem. Eng.
,
8
(
3
), pp.
1644
1650
.
12.
Liao
,
C. Z.
,
Zhang
,
M.
,
Niu
,
L. Y.
,
Zheng
,
Z. J.
, and
Yan
,
F.
,
2014
, “
Organic Electrochemical Transistors With Graphene-Modified Gate Electrodes for Highly Sensitive and Selective Dopamine Sensors
,”
J. Mater. Chem. B
,
2
(
2
), pp.
191
200
.
13.
Kujawska
,
M.
,
Bhardwaj
,
S. K.
,
Mishra
,
Y. K.
, and
Kaushik
,
A.
,
2021
, “
Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson's Disease Diagnostics
,”
Biosensors
,
11
(
11
), p.
433
.
14.
Hou
,
S. F.
,
Kasner
,
M. L.
,
Su
,
S. J.
,
Patel
,
K.
, and
Cuellari
,
R.
,
2010
, “
Highly Sensitive and Selective Dopamine Biosensor Fabricated With Silanized Graphene
,”
J. Phys. Chem. C
,
114
(
35
), pp.
14915
14921
.
15.
Qi
,
S. P.
,
Zhao
,
B.
,
Tang
,
H. Q.
, and
Jiang
,
X. Q.
,
2015
, “
Determination of Ascorbic Acid, Dopamine, and Uric Acid by a Novel Electrochemical Sensor Based on Pristine Graphene
,”
Electrochim. Acta
,
161
, pp.
395
402
.
16.
Darwish
,
L. R.
,
El-Wakad
,
M. T.
, and
Farag
,
M. M.
,
2021
, “
Towards an Ultra-Affordable Three-Dimensional Bioprinter: A Heated Inductive-Enabled Syringe Pump Extrusion Multifunction Module for Open-Source Fused Deposition Modeling Three-Dimensional Printers
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
125001
.
17.
Jin
,
Y.
,
Xiong
,
R.
,
Antonelli
,
P. J.
,
Long
,
C. J.
,
McAleer
,
C. W.
,
Hickman
,
J. J.
, and
Huang
,
Y.
,
2021
, “
Nanoclay Suspension-Enabled Extrusion Bioprinting of Three-Dimensional Soft Structures
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
), p.
121004
.
18.
Choo
,
S. S.
,
Kang
,
E. S.
,
Song
,
I.
,
Lee
,
D.
,
Choi
,
J. W.
, and
Kim
,
T. H.
,
2017
, “
Electrochemical Detection of Dopamine Using 3D Porous Graphene Oxide/Gold Nanoparticle Composites
,”
Sensors
,
17
(
4
), p.
861
.
19.
Pemathilaka
,
R. L.
,
Caplin
,
J. D.
,
Aykar
,
S. S.
,
Montazami
,
R.
, and
Hashemi
,
N. N.
,
2019
, “
Placenta-on-a-Chip: In Vitro Study of Caffeine Transport Across Placental Barrier Using Liquid Chromatography Mass Spectrometry
,”
Glob. Chall.
,
3
(
3
), p.
1800112
.
20.
Caplin
,
J. D.
,
Granados
,
N. G.
,
James
,
M. R.
,
Montazami
,
R.
, and
Hashemi
,
N.
,
2015
, “
Microfluidic Organ-on-a-Chip Technology for Advancement of Drug Development and Toxicology
,”
Adv. Healthcare Mater.
,
4
(
10
), pp.
1426
1450
.
21.
Bai
,
Z.
,
Mendoza Reyes
,
J. M.
,
Montazami
,
R.
, and
Hashemi
,
N.
,
2014
, “
On-Chip Development of Hydrogel Microfibers From Round to Square/Ribbon Shape
,”
J. Mater. Chem. A
,
2
(
14
), pp.
4878
4884
.
22.
Hashemi
,
N.
,
Lackore
,
J. M.
,
Sharifi
,
F.
,
Goodrich
,
P. J.
,
Winchell
,
M. L.
, and
Hashemi
,
N.
,
2016
, “
A Paper-Based Microbial Fuel Cell Operating Under Continuous Flow Condition
,”
Technology
,
4
(
2
), pp.
98
103
.
23.
Acar
,
H.
,
Çınar
,
S.
,
Thunga
,
M.
,
Kessler
,
M. R.
,
Hashemi
,
N.
, and
Montazami
,
R.
,
2014
, “
Study of Physically Transient Insulating Materials as a Potential Platform for Transient Electronics and Bioelectronics
,”
Adv. Funct. Mater.
,
24
(
26
), pp.
4135
4143
.
24.
Sharifi
,
F.
,
Patel
,
B. B.
,
McNamara
,
M. C.
,
Meis
,
P. J.
,
Roghair
,
M. N.
,
Lu
,
M.
,
Montazami
,
R.
,
Sakaguchi
,
D. S.
, and
Hashemi
,
N. N.
,
2019
, “
Photo-Cross-Linked Poly(Ethylene Glycol) Diacrylate Hydrogels: Spherical Microparticles to Bow Tie-Shaped Microfibers
,”
ACS Appl. Mater. Interfaces
,
11
(
20
), pp.
18797
18807
.
25.
Sharifi
,
F.
,
Patel
,
B. B.
,
Dzuilko
,
A. K.
,
Montazami
,
R.
,
Sakaguchi
,
D. S.
, and
Hashemi
,
N.
,
2016
, “
Polycaprolactone Microfibrous Scaffolds to Navigate Neural Stem Cells
,”
Biomacromolecules
,
17
(
10
), pp.
3287
3297
.
26.
Sechi
,
D.
,
Greer
,
B.
,
Johnson
,
J.
, and
Hashemi
,
N.
,
2013
, “
Three-Dimensional Paper-Based Microfluidic Device for Assays of Protein and Glucose in Urine
,”
Anal. Chem.
,
85
(
22
), pp.
10733
10737
.
27.
Niaraki
,
A.
,
Abbasi Shirsavar
,
M.
,
Aykar
,
S. A.
,
Taghavimehr
,
M.
,
Montazami
,
R.
, and
Hashemi
,
N.
,
2022
, “
Minute-Sensitive Real-Time Monitoring of Neural Cells Through Printed Graphene Microelectrodes
,”
Biosens. Bioelectron.
,
210
, p.
114284
.
28.
Chen
,
R.
,
Chang
,
R. C.
,
Tai
,
B.
,
Huang
,
Y.
,
Ozdoganlar
,
B.
,
Li
,
W.
, and
Shih
,
A.
,
2020
, “
Biomedical Manufacturing: A Review of the Emerging Research and Applications
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110807
.
29.
Thakare
,
K.
,
Jerpseth
,
L.
,
Qin
,
H.
, and
Pei
,
Z.
,
2021
, “
Bioprinting Using Algae: Effects of Extrusion Pressure and Needle Diameter on Cell Quantity in Printed Samples
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
014501
.
30.
Manbohi
,
A.
, and
Ahmadi
,
S. H.
,
2019
, “
Sensitive and Selective Detection of Dopamine Using Electrochemical Microfluidic Paper-Based Analytical Nanosensor
,”
Sens. Bio-Sens. Res.
,
23
, p.
100270
.
31.
Zhao
,
J.
,
Zhao
,
L.
,
Lan
,
C.
, and
Zhao
,
S.
,
2016
, “
Graphene Quantum Dots as Effective Probes for Label-Free Fluorescence Detection of Dopamine
,”
Sens. Actuators, B
,
223
, pp.
246
251
.
32.
Shirsavar
,
M. A.
,
Taghavimehr
,
M.
,
Ouedraogo
,
L. J.
,
Javaheripi
,
M.
,
Hashemi
,
N. N.
,
Koushanfar
,
F.
, and
Montazami
,
R.
,
2021
, “
Machine Learning-Assisted E-jet Printing of Organic Flexible Biosensors
,”
arXiv
. https://arXiv:2111.03985
33.
De Alwis
,
S.
,
Abbasi Shirsavar
,
M.
,
Singh
,
S.
, and
Hashemi
,
N. N.
,
2021
, “
Hydrodynamic Cavitation for Scalable Exfoliation of Few-Layered Graphene Nanosheets
,”
Nanotechnology
,
32
(
50
), p.
505701
.
34.
Clarke
,
G. A.
,
Hartse
,
B. X.
,
Niaraki Asli
,
A. E.
,
Taghavimehr
,
M.
,
Hashemi
,
N.
,
Abbasi Shirsavar
,
M.
,
Montazami
,
R.
,
Alimoradi
,
N.
,
Nasirian
,
V.
,
Ouedraogo
,
L.J.
, and
Hashemi
,
N.N.
,
2021
, “
Advancement of Sensor Integrated Organ-on-Chip Devices
,”
Sensors
,
21
(
4
).
35.
Guo
,
J.
,
Niaraki Asli
,
A. E.
,
Williams
,
K. R.
,
Lai
,
P. L.
,
Wang
,
X.
,
Montazami
,
R.
, and
Hashemi
,
N. N.
,
2019
, “
Viability of Neural Cells on 3D Printed Graphene Bioelectronics
,”
Biosensors
,
9
(
4
), p.
112
.
36.
Anuar
,
N. S.
,
Basirun
,
W. J.
,
Shalauddin
,
M.
, and
Akhter
,
S.
,
2020
, “
A Dopamine Electrochemical Sensor Based on a Platinum–Silver Graphene Nanocomposite Modified Electrode
,”
RSC Adv.
,
10
(
29
), pp.
17336
17344
.
37.
Lee
,
T. H.
,
Fan
,
H.-T.
,
Li
,
Y.
,
Shriver
,
D.
,
Arinez
,
J.
,
Xiao
,
G.
, and
Banu
,
M.
,
2020
, “
Enhanced Performance of Ultrasonic Welding of Short Carbon Fiber Polymer Composites Through Control of Morphological Parameters
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
011009
.
38.
Wu
,
B.
,
Hassanein
,
A.
,
Wang
,
M.
,
Tripathi
,
J. K.
, and
Kang
,
Z.
,
2020
, “
Laser-Based Fabrication of Carbon Nanotube–Metal Composites on a Polymer Substrate: Experimental Study and Characterizations
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091007
.
39.
Emran
,
M. Y.
,
Shenashen
,
M. A.
,
Morita
,
H.
, and
El-Safty
,
S. A.
,
2018
, “
3D-Ridge Stocked Layers of Nitrogen-Doped Mesoporous Carbon Nanosheets for Ultrasensitive Monitoring of Dopamine Released From PC12 Cells Under K(+) Stimulation
,”
Adv. Healthc. Mater.
,
7
(
16
), p.
e1701459
.
40.
Niaraki Asli
,
A. E.
,
Guo
,
J.
,
Lai
,
P. L.
,
Montazami
,
R.
, and
Hashemi
,
N. N.
,
2020
, “
High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns
,”
Biosensors
,
10
(
1
), p.
6
.
41.
McNamara
,
M. C.
,
Niaraki-Asli
,
A. E.
,
Guo
,
J.
,
Okuzono
,
J.
,
Montazami
,
R.
, and
Hashemi
,
N. N.
,
2020
, “
Enhancing the Conductivity of Cell-Laden Alginate Microfibers With Aqueous Graphene for Neural Applications
,”
Front. Mater.
,
7
.
42.
Rastogi
,
S. K.
,
Bliley
,
J.
,
Matino
,
L.
,
Garg
,
R.
,
Santoro
,
F.
,
Feinberg
,
A. W.
, and
Cohen-Karni
,
T.
,
2020
, “
Three-Dimensional Fuzzy Graphene Ultra-Microelectrodes for Subcellular Electrical Recordings
,”
Nano Res.
,
13
(
5
), pp.
1444
1452
.
43.
Hong
,
S. W.
,
Lee
,
J. H.
,
Kang
,
S. H.
,
Hwang
,
E. Y.
,
Hwang
,
Y. S.
,
Lee
,
M. H.
,
Han
,
D. W.
, and
Park
,
J. C.
,
2014
, “
Enhanced Neural Cell Adhesion and Neurite Outgrowth on Graphene-Based Biomimetic Substrates
,”
Biomed. Res. Int.
,
2014
, p.
212149
.
44.
Rastogi
,
S. K.
,
Raghavan
,
G.
,
Yang
,
G.
, and
Cohen-Karni
,
T.
,
2017
, “
Effect of Graphene on Nonneuronal and Neuronal Cell Viability and Stress
,”
Nano Lett.
,
17
(
5
), pp.
3297
3301
.
45.
Nakata
,
M.
,
Nagasaka
,
K.
,
Shimoda
,
M.
,
Takashima
,
I.
, and
Yamamoto
,
S.
,
2018
, “
Focal Brain Lesions Induced With Ultraviolet Irradiation
,”
Sci. Rep.
,
8
, p.
7968
.
46.
Niaraki
,
A.
,
McNamara
,
M. C.
,
Montazami
,
R.
, and
Hashemi
,
N. N.
,
2022
, “
Graphene Microelectrodes for Real-Time Impedance Spectroscopy of Neural Cells
,”
ACS Appl. Bio. Mater.
,
5
(
1
), pp.
113
122
.
47.
Ghilane
,
J.
,
Hapiot
,
P.
, and
Bard
,
J.
,
2006
, “
Metal/Polypyrrole Quasi-Reference Electrode for Voltammetry in Nonaqueous and Aqueous Solutions
,”
Anal. Chem.
,
78
(
19
), pp.
6868
6872
.
48.
Gunasekaran
,
S.
,
Raveendran
,
J.
,
Suneesh
,
S. P.
, and
Babu
,
T.
,
2019
, “
Fabrication of Disposable Electrochemicaln Dopamine Sensor Using Photoluminescent Graphene Oxide
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
577
(
1
), p.
012105
.
49.
Pampaloni
,
N. P.
,
Lottner
,
M.
,
Giugliano
,
M.
,
Matruglio
,
A.
,
D'Amico
,
F.
,
Prato
,
M.
,
Garrido
,
J. A.
,
Ballerini
,
L.
, and
Scaini
,
D.
,
2018
, “
Single-Layer Graphene Modulates Neuronal Communication and Augments Membrane Ion Currents
,”
Nat. Nanotechnol.
,
13
(
8
), pp.
755
764
.
50.
Chauhan
,
N.
,
Chawla
,
S.
,
Pundir
,
C. S.
, and
Jain
,
U.
,
2017
, “
An Electrochemical Sensor for Detection of Neurotransmitter-Acetylcholine Using Metal Nanoparticles, 2D Material and Conducting Polymer Modified Electrode
,”
Biosens. Bioelectron.
,
89
(
Pt 1
), pp.
377
383
.
51.
Tang
,
L.
,
Du
,
D.
,
Yang
,
F.
,
Liang
,
Z.
,
Ning
,
Y.
,
Wang
,
H.
, and
Zhang
,
G. J.
,
2015
, “
Preparation of Graphene-Modified Acupuncture Needle and Its Application in Detecting Neurotransmitters
,”
Sci. Rep.
,
5
(
1
), p.
11627
.
52.
Gunasekaran
,
S.
,
Raveendran
,
J.
,
Suneesh
,
P. V.
, and
Satheesh Babu
,
T. G.
,
2019
, “
Fabrication of Disposable Electrochemical Dopamine Sensor Using Photoluminescent Graphene Oxide
,”
IOP
,
Bengaluru, India
,
2018
, p.
012105
.
53.
Krampa
,
F. D.
,
Aniweh
,
Y.
,
Kanyong
,
P.
, and
Awandare
,
G. A.
,
2020
, “
Graphene Nanoplatelet-Based Sensor for the Detection of Dopamine and N-Acetyl-p-Aminophenol in Urine
,”
Arabian J. Chem.
,
13
(
1
), pp.
3218
3225
.
You do not currently have access to this content.