Abstract

Ultrasonic consolidation (USC) of thermoplastic composites is a highly attractive and promising method to manufacture high-performance composites. This work focuses on USC of dry carbon fiber (CF) fabrics with high-temperature polyphenylene sulfide (PPS) films. Experimental trials to assess feasibility of the process are time-consuming. Consequently, a predictive thermal model would facilitate process parameters selection to reduce expensive trial-and-error approaches. This paper presents a 2D finite element model of samples under consolidation, incorporating equations for viscoelastic heating, matrix phase change, and material properties. Theoretical temperature profiles for nodes of interest were compared to the corresponding experimental temperature curves for various control parameters (i.e., weld time and vertical displacement of sonotrode) and showed good agreement during heating phase. It was found that welding time values below 1750 ms were insufficient to reach melting temperature, whereas weld times above 3000 ms led to the lowest average void content (2.43 ± 0.81%). More specifically, the time the material spent above melting temperature, i.e., residence time, was established as a parameter that could estimate cases resulting in better consolidation and lower void content (time above 2600 ms for void content below 2.5%). X-ray diffraction (XRD) characterization revealed that the USC process led to mostly amorphous PPS, due to the high cooling rates (70 °C/s to 108 °C/s). Overall, the thermal model and micro-structural outcomes confirmed the feasibility of the USC process for layered composites made from dry fabric and high-temperature thermoplastic films.

References

1.
Yousefpour
,
A.
,
Hojjati
,
M.
, and
Immarigeon
,
J.-P.
,
2004
, “
Fusion Bonding/Welding of Thermoplastic Composites
,”
J. Thermoplast. Compos. Mater.
,
17
(
4
), pp.
303
341
.
2.
Zhi
,
Q.
,
Tan
,
X.-R.
,
Lu
,
L.
,
Chen
,
L.-Y.
,
Li
,
J.-C.
, and
Liu
,
Z.-X.
,
2017
, “
Decomposition of Ultrasonically Welded Carbon Fiber/Polyamide 66 and Its Effect on Weld Quality
,”
Weld. World
,
61
(
5
), pp.
1017
1028
.
3.
Yang
,
Y.
,
Li
,
Y.
,
Liu
,
Z.
,
Li
,
Y.
,
Ao
,
S.
, and
Luo
,
Z.
,
2022
, “
Ultrasonic Welding of Short Carbon Fiber Reinforced PEEK With Spherical Surface Anvils
,”
Compos. B Eng.
,
231
, p.
109599
.
4.
Wang
,
K.
,
Wang
,
X.
,
Yi
,
M.
,
Li
,
Y.
, and
Li
,
J.
,
2022
, “
Investigation of Ultrasonically Welded Thermoplastic Composite Joints Using Netlike Energy Directors
,”
ASME J. Manuf. Sci. Eng.
,
144
(
5
), p.
051004
.
5.
Villegas
,
I. F.
,
2015
, “
In Situ Monitoring of Ultrasonic Welding of Thermoplastic Composites Through Power and Displacement Data
,”
J. Thermoplast. Compos. Mater.
,
28
(
1
), pp.
66
85
.
6.
Bhudolia
,
S. K.
,
Gohel
,
G.
,
Leong
,
K. F.
, and
Barsotti
,
R. J.
,
2020
, “
Investigation on Ultrasonic Welding Attributes of Novel Carbon/Elium® Composites
,”
Materials
,
13
(
5
), p.
1117
.
7.
Jongbloed
,
B.
,
Teuwen
,
J.
,
Palardy
,
G.
,
Fernandez Villegas
,
I.
, and
Benedictus
,
R.
,
2020
, “
Continuous Ultrasonic Welding of Thermoplastic Composites: Enhancing the Weld Uniformity by Changing the Energy Director
,”
J. Compos. Mater.
,
54
(
15
), pp.
2023
2035
.
8.
Engelschall
,
M.
,
Larsen
,
L.
,
Fischer
,
F.
, and
Kupke
,
M.
, “
Robot-Based Continuous Ultrasonic Welding for Automated Production of Aerospace Structures
,”
Proc. SAMPE Europe
,
Nantes, France
,
Sept. 17–19
.
9.
Yang
,
Y.
,
Liu
,
Z.
,
Wang
,
Y.
, and
Li
,
Y.
,
2022
, “
Numerical Study of Contact Behavior and Temperature Characterization in Ultrasonic Welding of CF/PA66
,”
Polymers
,
14
(
4
), p.
683
.
10.
Takamura
,
M.
,
Uehara
,
K.
,
Koyanagi
,
J.
, and
Takeda
,
S.
,
2021
, “
Multi-Timescale Simulations of Temperature Elevation for Ultrasonic Welding of CFRP With Energy Director
,”
J. Multiscale Model.
,
12
(
4
), p.
2143003
.
11.
Rizzolo
,
R. H.
, and
Walczyk
,
D. F.
,
2016
, “
Ultrasonic Consolidation of Thermoplastic Composite Prepreg for Automated Fiber Placement
,”
J. Thermoplast. Compos. Mater.
,
29
(
11
), pp.
1480
1497
.
12.
Gomer
,
A.
,
Zou
,
W.
,
Grigat
,
N.
,
Sackmann
,
J.
, and
Schomburg
,
W.
,
2018
, “
Fabrication of Fiber Reinforced Plastics by Ultrasonic Welding
,”
J. Compos. Sci.
,
2
(
3
), p.
56
.
13.
Lionetto
,
F.
,
Dell’Anna
,
R.
,
Montagna
,
F.
, and
Maffezzoli
,
A.
,
2016
, “
Modeling of Continuous Ultrasonic Impregnation and Consolidation of Thermoplastic Matrix Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
82
, pp.
119
129
.
14.
Lionetto
,
F.
,
Dell’Anna
,
R.
,
Montagna
,
F.
, and
Maffezzoli
,
A.
,
2015
, “
Ultrasonic Assisted Consolidation of Commingled Thermoplastic/Glass Fiber Rovings
,”
Front. Mater.
,
2
, p.
32
.
15.
Dell’Anna
,
R.
,
Lionetto
,
F.
,
Montagna
,
F.
, and
Maffezzoli
,
A.
,
2018
, “
Lay-Up and Consolidation of a Composite Pipe by In Situ Ultrasonic Welding of a Thermoplastic Matrix Composite Tape
,”
Materials (Basel)
,
11
(
5
), p.
786
.
16.
Mehdikhani
,
M.
,
Gorbatikh
,
L.
,
Verpoest
,
I.
, and
Lomov
,
S. V.
,
2019
, “
Voids in Fiber-Reinforced Polymer Composites: A Review on Their Formation, Characteristics, and Effects on Mechanical Performance
,”
J. Compos. Mater.
,
53
(
12
), pp.
1579
1669
.
17.
Williams
,
S.
, and
Palardy
,
G.
,
2020
, “
Ultrasonic Consolidation of Dry Carbon Fiber and Polyphenylene Sulfide Film
,”
SAMPE Virtual Series
,
Virtual
,
July 17
.
18.
Koutras
,
N.
,
Benedictus
,
R.
, and
Villegas
,
I. F.
,
2021
, “
Thermal Effects on the Performance of Ultrasonically Welded CF/PPS Joints and Its Correlation to the Degree of Crystallinity at the Weldline
,”
Compos. Part C: Open Access
,
4
, p.
100093
.
19.
Koutras
,
N.
,
Amirdine
,
J.
,
Boyard
,
N.
,
Fernandez Villegas
,
I.
, and
Benedictus
,
R.
,
2019
, “
Characterisation of Crystallinity at the Interface of Ultrasonically Welded Carbon Fibre PPS Joints
,”
Compos. Part A: Appl. Sci. Manuf.
,
125
, p.
105574
.
20.
Agarwal
,
B. D.
,
Broutman
,
L. J.
, and
Chandrashekhara
,
K.
,
2018
,
Analysis and Performance of Fiber Composites
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
21.
Liu
,
D.
,
Zhu
,
Y.
,
Ding
,
J.
,
Lin
,
X.
, and
Fan
,
X.
,
2015
, “
Experimental Investigation of Carbon Fiber Reinforced Poly(Phenylene Sulfide) Composites Prepared Using a Double-Belt Press
,”
Compos. B Eng.
,
77
, pp.
363
370
.
22.
Benatar
,
A.
, and
Cheng
,
Z.
,
1989
, “
Ultrasonic Welding of Thermoplastics in the Far-Field
,”
Polym. Eng. Sci.
,
29
(
23
), pp.
1699
1704
.
23.
Levy
,
A.
,
Le Corre
,
S.
, and
Fernandez Villegas
,
I.
,
2014
, “
Modeling of the Heating Phenomena in Ultrasonic Welding of Thermoplastic Composites With Flat Energy Directors
,”
J. Mater. Process. Technol.
,
214
(
7
), pp.
1361
1371
.
24.
Villegas
,
I. F.
,
2014
, “
Strength Development Versus Process Data in Ultrasonic Welding of Thermoplastic Composites With Flat Energy Directors and Its Application to the Definition of Optimum Processing Parameters
,”
Compos. Part A Appl. Sci. Manuf.
,
65
, pp.
27
37
.
25.
B. G. Brito
,
C.
,
Teuwen
,
J.
,
Dransfeld
,
C. A.
, and
F. Villegas
,
I.
,
2022
, “
The Effects of Misaligned Adherends on Static Ultrasonic Welding of Thermoplastic Composites
,”
Compos. Part A Appl. Sci. Manuf.
,
155
, p.
106810
.
26.
Tateishi
,
N.
,
North
,
T. H.
, and
Woodhams
,
R. T.
,
1992
, “
Ultrasonic Welding Using Tie-Layer Materials. Part I: Analysis of Process Operation
,”
Polym. Eng. Sci.
,
32
(
9
), pp.
600
611
.
27.
Greco
,
A.
, and
Maffezzoli
,
A.
,
2003
, “
Statistical and Kinetic Approaches for Linear Low-Density Polyethylene Melting Modeling
,”
J. Appl. Polym. Sci.
,
89
(
2
), pp.
289
295
.
28.
Tsoularis
,
A. N.
, and
Wallace
,
J.
,
2002
, “
Analysis of Logistic Growth Models
,”
Math. Biosci.
,
179
(
1
), pp.
21
55
.
29.
Seber
,
G. A. F.
, and
Wild
,
C. J.
,
1989
,
Nonlinear Regression
,
John Wiley & Sons
,
Nashville, TN
.
30.
Cao
,
L.
,
Shi
,
P.-J.
,
Li
,
L.
, and
Chen
,
G.
,
2019
, “
A New Flexible Sigmoidal Growth Model
,”
Symmetry
,
11
(
2
), p.
204
.
31.
Roylance
,
M.
,
Player
,
J.
,
Zukas
,
W.
, and
Roylance
,
D.
,
2004
, “
Modeling of Ultrasonic Processing
,”
J. Appl. Polym. Sci.
,
93
(
4
), pp.
1609
1615
.
32.
Hoskins
,
D.
, and
Palardy
,
G.
,
2020
, “
High-Speed Consolidation and Repair of Carbon Fiber/Epoxy Laminates Through Ultrasonic Vibrations: A Feasibility Study
,”
J. Compos. Mater.
,
54
(
20
), pp.
2707
2721
.
33.
Hu
,
Z.
,
Li
,
L.
,
Sun
,
B.
,
Meng
,
S.
,
Chen
,
L.
, and
Zhu
,
M.
,
2015
, “
Effect of TiO2@SiO2 Nanoparticles on the Mechanical and UV-Resistance Properties of Polyphenylene Sulfide Fibers
,”
Prog. Nat. Sci.: Mater. Int.
,
25
(
4
), pp.
310
315
.
34.
Zhang
,
M.
,
Wang
,
X.
,
Bai
,
Y.
,
Li
,
Z.
, and
Cheng
,
B.
,
2017
, “
C60 as Fine Fillers to Improve Poly(Phenylene Sulfide) Electrical Conductivity and Mechanical Property
,”
Sci. Rep.
,
7
(
1
), p.
4443
.
35.
Amaral
,
M. A. D.
,
Matsushima
,
J. T.
,
Rezende
,
M. C.
,
Gonçalves
,
E. S.
,
Marcuzzo
,
J. S.
, and
Baldan
,
M. R.
,
2017
, “
Production and Characterization of Activated Carbon Fiber From Textile PAN Fiber
,”
J. Aerosp. Technol. Manage.
,
9
(
4
), pp.
423
430
.
36.
Lee
,
T. H.
,
Boey
,
F. Y. C.
, and
Khor
,
K. A.
,
1995
, “
X-Ray Diffraction Analysis Technique for Determining the Polymer Crystallinity in a Polyphenylene Sulfide Composite
,”
Polym. Compos.
,
16
(
6
), pp.
481
488
.
You do not currently have access to this content.