Abstract

Chatter is one of the major issues that cause undesirable effects limiting machining productivity. Passive control devices, such as tuned mass dampers (TMDs), have been widely employed to increase machining stability by suppressing chatter. More recently, inerter-based devices have been developed for a wide variety of engineering vibration mitigation applications. However, no experimental study for the application of inerters to the machining stability problem has yet been conducted. This article presents an implementation of an inerter-based dynamic vibration absorber (IDVA) to the problem of chatter stability, for the first time. For this, it employs the IDVA with a pivoted-bar inerter developed in the study by Dogan et al. (2022, “Design, Testing and Analysis of a Pivoted-Bar Inerter Device Used as a Vibration Absorber, Mechanical Systems and Signal Processing,” 171, p. 108893) to mitigate the chatter effect under cutting forces in milling. Due to the nature of machining stability, the optimal design parameters for the IDVA are numerically obtained by considering the real part of the frequency response function (FRF), which enables the absolute stability limit in a single degree-of-freedom (SDOF) to be maximized for a milling operation. Chatter performance is experimentally validated through milling trials using the prototype IDVA and a flexible workpiece. The experimental results show that the IDVA provides more than 15% improvement in the absolute stability limit compared to a classical TMD.

References

1.
Dogan
,
H.
,
Sims
,
N. D.
, and
Wagg
,
D. J.
,
2022
, “
Design, Testing and Analysis of a Pivoted-Bar Inerter Device Used as a Vibration Absorber
,”
Mech. Syst. Signal. Process.
,
171
, p.
108893
.
2.
Hahn
,
R. S.
,
1951
, “
Design of Lanchester Damper for Elminiation of Metal-Cutting Chatter
,”
J. Eng. Ind.
,
73
(
3
), pp.
331
335
.
3.
Tobias
,
S. A.
,
1965
,
Machine Tool Vibration
,
Blackie and Sons Ltd.
,
London
.
4.
Rivin
,
E. I.
, and
Kang
,
H.
,
1992
, “
Enhancement of Dynamic Stability of Cantilever Tooling Structures
,”
Int. J. Mach. Tools. Manuf.
,
32
(
4
), pp.
539
561
.
5.
Tarng
,
Y. S.
,
Kao
,
J. Y.
, and
Lee
,
E. C.
,
2000
, “
Chatter Suppression in Turning Operations With a Tuned Vibration Absorber
,”
J. Mater. Process. Technol.
,
105
(
1
), pp.
55
60
.
6.
Den Hartog
,
J. P.
,
1956
,
Mechanical Vibrations
,
McGraw-Hill
,
New York
.
7.
Tobias
,
S. A.
, and
Fishwick
,
W.
,
1958
, “
Theory of Regenerative Machine Tool Chatter
,”
Engineer
,
205
(
7
), pp.
199
203
.
8.
Tlusty
,
J.
, and
Polacek
,
M.
,
1963
, “
The Stability of the Machine Tool Against Self-Excited Vibration in Machining
,”
Int. Res. Production Eng.
,
1
(
2
), pp.
465
474
.
9.
Sims
,
N. D.
,
2007
, “
Vibration Absorbers for Chatter Suppression: A New Analytical Tuning Methodology
,”
J. Sound. Vib.
,
301
(
3–5
), pp.
592
607
.
10.
Miguélez
,
M. H.
,
Rubio
,
L.
,
Loya
,
J. A.
, and
Fernández-Sáez
,
J.
,
2010
, “
Improvement of Chatter Stability in Boring Operations With Passive Vibration Absorbers
,”
Int. J. Mech. Sci.
,
52
(
10
), pp.
1376
1384
.
11.
Rubio
,
L.
,
Loya
,
J. A.
,
Miguélez
,
M. H.
, and
Fernández-Sáez
,
J.
,
2013
, “
Optimization of Passive Vibration Absorbers to Reduce Chatter in Boring
,”
Mech. Syst. Signal. Process.
,
41
(
1–2
), pp.
691
704
.
12.
Rashid
,
A.
, and
Nicolescu
,
C. M.
,
2008
, “
Design and Implementation of Tuned Viscoelastic Dampers for Vibration Control in Milling
,”
Int. J. Mach. Tools. Manuf.
,
48
(
9
), pp.
1036
1053
.
13.
Munoa
,
J.
,
Iglesias
,
A.
,
Olarra
,
A.
,
Dombovari
,
Z.
,
Zatarain
,
M.
, and
Stepan
,
G.
,
2016
, “
Design of Self-Tuneable Mass Damper for Modular Fixturing Systems
,”
CIRP Ann. Manuf. Technol.
,
65
(
1
), pp.
389
392
.
14.
Yang
,
Y.
,
Xie
,
R.
, and
Liu
,
Q.
,
2017
, “
Design of a Passive Damper With Tunable Stiffness and Its Application in Thin-Walled Part Milling
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9
), pp.
2713
2720
.
15.
Yuan
,
H.
,
Wan
,
M.
,
Yang
,
Y.
, and
Zhang
,
W. H.
,
2019
, “
A Tunable Passive Damper for Suppressing Chatters in Thin-Wall Milling by Considering the Varying Modal Parameters of the Workpiece
,”
Int. J. Adv. Manuf. Technol.
,
104
(
9–12
), pp.
4605
4616
.
16.
Yuan
,
H.
,
Wan
,
M.
, and
Yang
,
Y.
,
2019
, “
Design of a Tunable Mass Damper for Mitigating Vibrations in Milling of Cylindrical Parts
,”
Chinese J. Aeronautics
,
32
(
3
), pp.
748
758
.
17.
Yadav
,
A.
,
Talaviya
,
D.
,
Bansal
,
A.
, and
Law
,
M.
,
2020
, “
Design of Chatter-Resistant Damped Boring Bars Using a Receptance Coupling Approach
,”
J. Manuf. Materials Process.
,
4
(
2
), p.
53
.
18.
Ma
,
W.
,
Yu
,
J.
,
Yang
,
Y.
, and
Wang
,
Y.
,
2020
, “
Optimization and Tuning of Passive Tuned Mass Damper Embedded in Milling Tool for Chatter Mitigation
,”
J. Manuf. Materials Process.
,
5
(
1
), p.
2
.
19.
Yang
,
Y.
,
Muñoa
,
J.
, and
Altintas
,
Y.
,
2010
, “
Optimization of Multiple Tuned Mass Dampers to Suppress Machine Tool Chatter
,”
Int. J. Mach. Tools. Manuf.
,
50
(
9
), pp.
834
842
.
20.
Nakano
,
Y.
,
Takahara
,
H.
, and
Kondo
,
E.
,
2013
, “
Countermeasure Against Chatter in End Milling Operations Using Multiple Dynamic Absorbers
,”
J. Sound. Vib.
,
332
(
6
), pp.
1626
1638
.
21.
Wang
,
M.
,
Zan
,
T.
,
Yang
,
Y.
, and
Fei
,
R.
,
2010
, “
Design and Implementation of Nonlinear TMD for Chatter Suppression: An Application in Turning Processes
,”
Int. J. Mach. Tools. Manuf.
,
50
(
5
), pp.
474
479
.
22.
Wang
,
M.
,
2011
, “
Feasibility Study of Nonlinear Tuned Mass Damper for Machining Chatter Suppression
,”
J. Sound. Vib.
,
330
(
9
), pp.
1917
1930
.
23.
Habib
,
G.
,
Kerschen
,
G.
, and
Stepan
,
G.
,
2017
, “
Chatter Mitigation Using the Nonlinear Tuned Vibration Absorber
,”
Int. J. Non-Linear Mech.
,
91
, pp.
103
112
.
24.
Yang
,
Y.
,
Dai
,
W.
, and
Liu
,
Q.
,
2014
, “
Design and Implementation of Two-Degree-of-Freedom Tuned Mass Damper in Milling Vibration Mitigation
,”
J. Sound. Vib.
,
335
, pp.
78
88
.
25.
Yang
,
Y.
,
Dai
,
W.
, and
Liu
,
Q.
,
2017
, “
Design and Machining Application of a Two-DOF Magnetic Tuned Mass Damper
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
1635
1643
.
26.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE. Trans. Automat. Contr.
,
47
(
10
), pp.
1648
1662
.
27.
Papageorgiou
,
C.
,
Houghton
,
N. E.
, and
Smith
,
M. C.
,
2009
, “
Experimental Testing and Analysis of Inerter Devices
,”
ASME J. Dyn. Syst., Meas., Control
,
131
(
1
), p.
011001
.
28.
Chen
,
M. Z.
,
Papageorgiou
,
C.
,
Scheibe
,
F.
,
Wang
,
F. C.
, and
Smith
,
M.
,
2009
, “
The Missing Mechanical Circuit Element
,”
IEEE Circuits Syst. Mag.
,
9
(
1
), pp.
10
26
.
29.
Wang
,
F. C.
, and
Su
,
W. J.
,
2008
, “
Impact of Inerter Nonlinearities on Vehicle Suspension Control
,”
Vehicle Syst. Dyn.
,
46
(
7
), pp.
575
595
.
30.
Swift
,
S. J.
,
Smith
,
M. C.
,
Glover
,
A. R.
,
Papageorgiou
,
C.
,
Gartner
,
B.
, and
Houghton
,
N. E.
,
2013
, “
Design and Modelling of a Fluid Inerter
,”
Int. J. Control.
,
86
(
11
), pp.
2035
2051
.
31.
De Domenico
,
D.
,
Deastra
,
P.
,
Ricciardi
,
G.
,
Sims
,
N. D.
, and
Wagg
,
D. J.
,
2018
, “
Novel Fluid Inerter Based Tuned Mass Dampers for Optimised Structural Control of Base-Isolated Buildings
,”
J. Franklin Inst.
,
356
(
14
), pp.
7626
7649
.
32.
John
,
E. D. A.
, and
Wagg
,
D. J.
,
2019
, “
Design and Testing of a Frictionless Mechanical Inerter Device Using Living-Hinges
,”
J. Franklin Inst.
,
356
(
14
), pp.
7650
7668
.
33.
Smith
,
M. C.
,
2020
, “
The Inerter: A Retrospective
,”
Ann. Rev. Control, Robotics, Autonomous Syst.
,
3
(
1
), pp.
361
391
.
34.
Wagg
,
D. J.
,
2021
, “
A Review of the Mechanical Inerter: Historical Context, Physical Realisations and Nonlinear Applications
,”
Nonlinear Dyn.
,
104
(
1
), pp.
13
34
.
35.
Smith
,
M. C.
, and
Wang
,
F. C.
,
2004
, “
Performance Benefits in Passive Vehicle Suspensions Employing Inerters
,”
Vehicle Syst. Dyn.
,
42
(
4
), pp.
235
257
.
36.
Jiang
,
J. Z.
,
Maramoros-Sanchez
,
A. Z.
,
Goodall
,
R. M.
, and
Smith
,
M. C.
,
2012
, “
Passive Suspension Incorporating Inerters for Railway Vehicles
,”
Vehicle Syst. Dyn.
,
50
(
1
), pp.
263
276
.
37.
Li
,
Y.
,
Jiang
,
J. Z.
,
Neild
,
S. A.
, and
Wang
,
H.
,
2017
, “
Optimal Inerter-Based Shock–Strut Configurations for Landing-Gear Touchdown Performance
,”
J. Aircraft
,
54
(
5
), pp.
1901
1909
.
38.
Li
,
Y.
,
Jiang
,
J. Z.
, and
Neild
,
S.
,
2017
, “
Inerter-Based Configurations for Main-Landing-Gear Shimmy Suppression
,”
J. Aircraft
,
54
(
2
), pp.
684
693
.
39.
Lazar
,
I. F.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2014
, “
Using an Inerter-Based Device for Structural Vibration Suppression
,”
Earthquake Eng. Structural Dyn.
,
43
(
8
), pp.
1129
1147
.
40.
Giaralis
,
A.
, and
Taflanidis
,
A. A.
,
2018
, “
Optimal Tuned Mass-Damper-Inerter (TMDI) Design for Seismically Excited MDOF Structures With Model Uncertainties Based on Reliability Criteria
,”
Struct Control Health Monit
,
25
(
2
), pp.
1
22
.
41.
Shi
,
X.
, and
Zhu
,
S.
,
2018
, “
Dynamic Characteristics of Stay Cables With Inerter Dampers
,”
J. Sound. Vib.
,
423
, pp.
287
305
.
42.
Hu
,
Y.
,
Wang
,
J.
,
Chen
,
M. Z. Q.
,
Li
,
Z.
, and
Sun
,
Y.
,
2018
, “
Load Mitigation for a Barge-Type Floating Off Shore Wind Turbine Via Inerter-Based Passive Structural Control
,”
Eng. Struct.
,
177
(
15
), pp.
198
209
.
43.
Marian
,
L.
, and
Giaralis
,
A.
,
2014
, “
Optimal Design of a Novel Tuned Mass-Damper-Inerter (TMDI) Passive Vibration Control Configuration for Stochastically Support-Excited Structural Systems
,”
Probabilistic. Eng. Mech.
,
38
, pp.
156
164
.
44.
Ikago
,
K.
,
Saito
,
K.
, and
Inoue
,
N.
,
2012
, “
Seismic Control of Single-Degree-of-Freedom Structure Using Tuned Viscous Mass Damper
,”
Earthquake Eng. Struct. Dyn.
,
41
(
3
), pp.
453
474
.
45.
Hu
,
Y.
, and
Chen
,
M. Z. Q.
,
2015
, “
Performance Evaluation for Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
99
, pp.
297
307
.
46.
Hu
,
Y.
,
Chen
,
M. Z. Q.
,
Shu
,
Z.
, and
Huang
,
L.
,
2015
, “
Analysis and Optimisation for Inerter-Based Isolators Via Fixed-Point Theory and Algebraic Solution
,”
J. Sound. Vib.
,
346
, pp.
17
36
.
47.
Barredo
,
E.
,
Blanco
,
A.
,
Colín
,
J.
,
Penagos
,
V. M.
,
Abúndez
,
A.
,
Vela
,
L. G.
,
Meza
,
V.
,
Cruz
,
R. H.
, and
Mayén
,
J.
,
2018
, “
Closed-Form Solutions for the Optimal Design of Inerter-Based Dynamic Vibration Absorbers
,”
Int. J. Mech. Sci.
,
144
, pp.
41
53
.
48.
Dogan
,
H.
,
Sims
,
N. D.
, and
Wagg
,
D. J.
,
2019
, “
Investigation of the Inerter-Based Dynamic Vibration Absorber for Machining Chatter Suppression
,”
J. Phys.: Conference Ser.
,
1264
(
1
), p.
012030
.
49.
Wang
,
F. C.
,
Lee
,
C. H.
, and
Zheng
,
R. Q.
,
2019
, “
Benefits of the Inerter in Vibration Suppression of a Milling Machine
,”
J. Franklin Inst.
,
356
(
14
), pp.
7689
7703
.
50.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part I : General Formulation
,”
ASME J. Dyn. Syst., Measur., Control
,
120
(
1
), pp.
22
30
.
51.
Budak
,
E.
, and
Altintas
,
Y.
,
1998
, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
1
), pp.
31
36
.
52.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
,
2002
, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
124
(
2
), pp.
217
225
.
53.
Qin
,
A. K.
,
Huang
,
V. L.
, and
Suganthan
,
P. N.
,
2009
, “
Self-Adaptive Differential Evolution Algorithm for Numerical Optimization
,”
IEEE Commun. Magazine
,
13
(
2
), pp.
398
417
.
54.
Worden
,
K.
, and
Manson
,
G.
,
2012
, “
On the Identification of Hysteretic Systems. Part I: Fitness Landscapes and Evolutionary Identification
,”
Mech. Syst. Signal. Process.
,
29
, pp.
201
212
.
55.
Almagirby
,
A.
,
Rongong
,
J. A.
, and
Carré
,
M. J.
,
2018
, “
The Development of a New Artificial Model of a Finger for Assessing Transmitted Vibrations
,”
J. Mech. Behavior Biomed. Mater.
,
78
, pp.
20
27
.
56.
Deastra
,
P.
,
Wagg
,
D. J.
,
Sims
,
N. D.
, and
Mills
,
R. S.
,
2022
, “
Experimental Shake Table Validation of Damping Behaviour in Inerter-Based Dampers
,”
Bulletin Earthquake Eng.
,
2002
, pp.
1
21
.
57.
Sims
,
N.
,
2005
, “
The Self-Excitation Damping Ratio: A Chatter Criterion for Time-Domain Milling Simulation
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
433
445
.
58.
Schmitz
,
T. L.
,
2003
, “
Chatter Recognition by a Statistical Evaluation of the Synchronously Sampled Audio Signal
,”
J. Sound. Vib.
,
262
(
3
), pp.
721
730
.
59.
Insperger
,
T.
,
Mann
,
B. P.
,
Surmann
,
T.
, and
Stépán
,
G.
,
2008
, “
On the Chatter Frequencies of Milling Processes With Runout
,”
Int. J. Mach. Tools. Manuf.
,
48
(
10
), pp.
1081
1089
.
You do not currently have access to this content.