Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Surface-enhanced Raman spectroscopy (SERS) is emerging as a powerful tool for detecting and identifying chemical and biological substances because of its high sensitivity, specificity, speed, and label-free detection. For SERS substrates to be effective in sensing applications, they must exhibit reproducible and robust high signal enhancement and cost-effective scalability. This article introduces a highly sensitive, large-area silver SERS substrate patterned with a uniform array of 3D retroreflecting inverted pyramids and develops a manufacturing pathway for it, using a novel and facile electrochemical imprinting process called solid-state superionic stamping (S4). Substrates, approximately 4 mm2 in area, are produced and tested with 1,2-bis(4-pyridyl) ethylene (BPE). Uniformly high and reproducible spatially averaged enhancement factor (EF), typically around a value of 2 × 107 with a relative standard deviation of 6.7% and a high batch-to-batch repeatability with a relative standard deviation of 10.5% between batches were observed. Passivating a substrate's surface with atomically thin layers of alumina, deposited using atomic layer deposition (ALD) was effective in maintaining the EF constant over a 60-day period, albeit with a trade-off between its EF and its lifespan. S4 has the potential to make substrates with EF consistently greater than 107 available at a cost of $1 to $2 per substrate, allowing SERS to be adopted across a wide spectrum of high-volume applications, including security, food safety, medical diagnostics, and chem-bio analysis.

References

1.
Pompa
,
P. P.
,
Martiradonna
,
L.
,
Torre
,
A. D.
,
Sala
,
F. D.
,
Manna
,
L.
,
De Vittorio
,
M.
,
Calabi
,
F.
,
Cingolani
,
R.
, and
Rinaldi
,
R.
,
2006
, “
Metal-Enhanced Fluorescence of Colloidal Nanocrystals with Nanoscale Control
,”
Nat. Nanotechnol.
,
1
(
2
), pp.
126
130
.
2.
Nakatani
,
K.
,
Sando
,
S.
, and
Saito
,
I.
,
2001
, “
Scanning of Guanine–Guanine Mismatches in DNA by Synthetic Ligands Using Surface Plasmon Resonance
,”
Nat. Biotechnol.
,
19
(
1
), pp.
51
55
.
3.
Willets
,
K. A.
, and
Van Duyne
,
R. P.
,
2007
, “
Localized Surface Plasmon Resonance Spectroscopy and Sensing
,”
Annu. Rev. Phys. Chem.
,
58
(
1
), pp.
267
297
.
4.
Lim
,
D. K.
,
Jeon
,
K. S.
,
Hwang
,
J. H.
,
Kim
,
H.
,
Kwon
,
S.
,
Suh
,
Y. D.
, and
Nam
,
J. M.
,
2011
, “
Highly Uniform and Reproducible Surface-Enhanced Raman Scattering From DNA-Tailorable Nanoparticles With 1-nm Interior gap
,”
Nat. Nanotechnol.
,
6
(
7
), pp.
452
460
.
5.
Langer
,
J.
,
Aberasturi
,
D. J. D.
,
Aizpurua
,
J.
,
Alvarez-Puebla
,
R. A.
,
Auguié
,
B.
,
Baumberg
,
J. J.
,
Bazan
,
G. C.
, et al
,
2019
, “
Present and Future of Surface-Enhanced Raman Scattering
,”
ACS Nano
,
14
(
1
), pp.
28
117
.
6.
Krug
,
J. T.
,
Wang
,
G. D.
,
Emory
,
S. R.
, and
Nie
,
S.
,
1999
, “
Efficient Raman Enhancement and Intermittent Light Emission Observed in Single Gold Nanocrystals
,”
J. Am. Chem. Soc.
,
121
(
39
), pp.
9208
9214
.
7.
Carron
,
K. T.
,
Xue
,
G.
, and
Lewis
,
M. L.
,
1991
, “
A Surface Enhanced Raman Spectroscopy Study of the Corrosion-Inhibiting Properties of Benzimidazole and Benzotriazole on Copper
,”
Langmuir
,
7
(
1
), pp.
2
4
.
8.
Jensen
,
T. R.
,
Malinsky
,
M. D.
,
Haynes
,
C. L.
, and
Van Duyne
,
R. P.
,
2000
, “
Nanosphere Lithography: Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles
,”
J. Phys. Chem. B
,
104
(
45
), pp.
10549
10556
.
9.
Sauer
,
G.
,
Nickel
,
U.
, and
Schneider
,
S.
,
2000
, “
Preparation of SERS-Active Silver Film Electrodes via Electrocrystallization of Silver
,”
J. Raman Spectrosc.
,
31
(
5
), pp.
359
363
.
10.
Tao
,
A.
,
Kim
,
F.
,
Hess
,
C.
,
Goldberger
,
J.
,
He
,
R.
,
Sun
,
Y.
,
Xia
,
Y.
, and
Yang
,
P.
,
2003
, “
Langmuir− Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy
,”
Nano Lett.
,
3
(
9
), pp.
1229
1233
.
11.
Robinson
,
A.
, and
Lawson
,
R.
,
2016
,
Materials and Processes for Next-Generation Lithography
,
Elsevier
,
New York
.
12.
Lucas
,
K.
,
Cork
,
C.
,
Yu
,
B.
,
Luk-Pat
,
G.
,
Painter
,
B.
, and
Pan
,
D. Z.
,
2012
, “
Implications of Triple Patterning for 14 nm Node Design and Patterning
,”
Design for Manufacturability Through Design-Process Integration VI, SPIE Advanced Lithography
,
San Jose, CA
,
Feb. 12–16
, SPIE, pp.
11
22
.
13.
Petti
,
L.
,
Capasso
,
R.
,
Rippa
,
M.
,
Pannico
,
M.
,
Manna
,
P. L.
,
Peluso
,
G.
,
Calarco
,
A.
,
Bobeico
,
E.
, and
Musto
,
P.
,
2016
, “
A Plasmonic Nanostructure Fabricated by Electron Beam Lithography as a Sensitive and Highly Homogeneous SERS Substrate for bio-Sensing Applications
,”
Vib. Spectrosc.
,
82
, pp.
22
30
.
14.
Sivashanmugan
,
K.
,
Liao
,
J. D.
,
You
,
J. W.
, and
Wu
,
C. L.
,
2013
, “
Focused-Ion-Beam-Fabricated Au/Ag Multilayered Nanorod Array as SERS-Active Substrate for Virus Strain Detection
,”
Sens. Actuators, B
,
181
, pp.
361
367
.
15.
Wu
,
H. Y.
,
Choi
,
C. J.
, and
Cunningham
,
B. T.
,
2012
, “
Plasmonic Nanogap-Enhanced Raman Scattering Using a Resonant Nanodome Array
,”
Small
,
8
(
18
), pp.
2878
2885
.
16.
Atwater
,
H. A.
, and
Polman
,
A.
,
2010
, “
Plasmonics for Improved Photovoltaic Devices
,”
Nat. Mater.
,
9
(
3
), pp.
205
213
.
17.
Anker
,
J. N.
,
Hall
,
W. P.
,
Lyandres
,
O.
,
Shah
,
N. C.
,
Zhao
,
J.
, and
Van Duyne
,
R. P.
,
2008
, “
Biosensing With Plasmonic Nanosensors
,”
Nat. Mater.
,
7
(
6
), pp.
442
453
.
18.
Hsu
,
K. H.
,
Ferreira
,
P. M.
, and
Fang
,
N.
,
2006
, “
Direct Nanopatterning with Solid Ionic Stamping
,”
ASME International Mechanical Engineering Congress and Exposition
,
Chicago, IL
,
Nov. 5–10
, Vol. 47691, pp.
489
490
.
19.
Hsu
,
K. H.
,
Schultz
,
P. L.
,
Ferreira
,
P. M.
, and
Fang
,
N. X.
,
2007
, “
Electrochemical Nanoimprinting With Solid-State Superionic Stamps
,”
Nano Lett.
,
7
(
2
), pp.
446
451
.
20.
Hankus
,
M. E.
,
Stratis-Cullum
,
D. N.
, and
Pellegrino
,
P. M.
,
2011
, “
Surface Enhanced Raman Scattering (SERS)-Based Next Generation Commercially Available Substrate: Physical Characterization and Biological Application
,”
Biosensing and Nanomedicine IV, Vol. 8099
,
San Diego CA
,
Aug. 21–23
, pp.
68
77
.
21.
McNay
,
G.
,
Eustace
,
D.
,
Smith
,
W. E.
,
Faulds
,
K.
, and
Graham
,
D.
,
2011
, “
Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications
,”
Appl. Spectrosc.
,
65
(
8
), pp.
825
837
.
22.
Gómez
,
M.
,
Kadkhodazadeh
,
S.
, and
Lazzari
,
M.
,
2018
, “
Surface Enhanced Raman Scattering (SERS) in the Visible Range on Scalable Aluminum-Coated Platforms
,”
Chem. Commun.
,
54
(
75
), pp.
10638
10641
.
23.
Vernon
,
K. C.
,
Davis
,
T. J.
,
Scholes
,
F. H.
,
Gómez
,
D. E.
, and
Lau
,
D.
,
2010
, “
Physical Mechanisms Behind the SERS Enhancement of Pyramidal pit Substrates
,”
J. Raman Spectrosc.
,
41
(
10
), pp.
1106
1111
.
24.
Hsu
,
K.
,
Schultz
,
P.
,
Ferreira
,
P.
, and
Fang
,
N.
,
2007
, “
Solid-State Electrochemical Stamping of Functional Metallic Nanostructures
,”
Seventh IEEE Conference on Nanotechnology (IEEE NANO)
,
Hong Kong
,
Aug. 2–5
, IEEE, pp.
162
165
.
25.
Jacobs
,
K. E.
, and
Ferreira
,
P. M.
,
2016
, “
Direct e-Beam Writing of Colors on (AgI)x(AgPO3)1 − x Glass
,”
J. Vac. Sci. Technol. B
,
34
(
4
), p.
041605
.
26.
Qian
,
B.
,
Sultana
,
P.
,
Chen
,
P.
,
Mensing
,
G.
, and
Ferreira
,
P.
,
2022
, “
Stamping Colors with Solid-State Superionic Stamping (S4)
,”
J Manuf. Processes.
,
79
, pp.
305
313
.
27.
Hsu
,
K. H.
,
Schultz
,
P. L.
,
Fang
,
N. X.
, and
Ferreira
,
P. M.
,
2008
, “Patterning with Electrolytes: Solid-State Superionic Stamping,”
Unconventional Nanopatterning Techniques and Applications
,
J. A.
Rogers
and
H. H.
Lee
, eds.,
John Wiley & Sons Ltd.
,
Hoboken NJ
, pp.
195
213
.
28.
Schultz
,
P. L.
,
Hsu
,
K. H.
,
Fang
,
N. X.
, and
Ferreira
,
P. M.
,
2007
, “
Solid-State Electrochemical Nanoimprinting of Copper
,”
J. Vac. Sci. Technol. B
,
25
(
6
), pp.
2419
2424
.
29.
Jacobs
,
K. E.
,
Hsu
,
K. H.
,
Han
,
X.
,
Kumar
,
A.
,
Azeredo
,
B. P.
,
Fang
,
N. X.
, and
Ferreira
,
P. M.
,
2011
, “
Solid-State Superionic Stamping With Silver Iodide–Silver Metaphosphate Glass
,”
Nanotechnology
,
22
(
42
), p.
425301
.
30.
Barna
,
S. F.
,
Ramanathan
,
A.
,
Jacobs
,
K. E.
,
Mensing
,
G.
,
Shoemaker
,
D. P.
, and
Ferreira
,
P. M.
,
2017
, “
Solid State Electrochemical Direct Writing of Copper Nanostructures on an ion Conductive Phosphate Glass Using Atomic Force Microscopy
,”
45th North American Manufacturing Research Conference (NAMRC 2017)
,
Los Angeles, CA
,
June 4–8
.
31.
Jacobs
,
K. E.
, and
Ferreira
,
P. M.
,
2015
, “
Painting and Direct Writing of Silver Nanostructures on Phosphate Glass with Electron Beam Irradiation
,”
Adv. Func. Mater.
,
25
(
33
), pp.
5261
5268
.
32.
Jacobs
,
K. E.
,
2016
, “
Solid-State Superionic Conductors for Advanced Nanoscale Fabrication
,” PhD Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL.
33.
Chen
,
P.
,
2020
, “
Scalable Direct Electrochemical Nanopatterning of Silver Films
,” PhD Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL.
34.
Chen
,
P.
,
Qian
,
B.
,
Barna
,
S. F.
,
Mensing
,
G.
, and
Ferreira
,
P.
,
2019
, “
An Experimental Investigation Into Plate-to-Roll Patterning With Solid-State Superionic Stamping
,”
47th SME North American Manufacturing Research Conference (NAMRC 2019)
,
Erie, PA
,
June 10–14
.
35.
Liu
,
Y.
,
Zhang
,
Y.
,
Tardivel
,
M.
,
Lequeux
,
M.
,
Chen
,
X.
,
Liu
,
W.
, and
Huang
,
J.
,
2020
, “
Evaluation of the Reliability of Six Commercial SERS Substrates
,”
Plasmonics
,
15
(
3
), pp.
743
752
.
36.
Xu
,
Z.
,
Jiang
,
J.
,
Wang
,
X.
,
Han
,
K.
,
Ameen
,
A.
,
Khan
,
I.
,
Chang
,
T.
, and
Liu
,
G. L.
,
2016
, “
Large-Area, Uniform and Low-Cost Dual-Mode Plasmonic Naked-Eye Colorimetry and SERS Sensor With Handheld Raman Spectrometer
,”
Nanoscale
,
8
(
11
), pp.
6162
6172
.
37.
Zhuang
,
Z.
,
Shi
,
X.
,
Chen
,
Y.
, and
Zuo
,
M.
,
2011
, “
Surface-Enhanced Raman Scattering of Trans-1, 2-bis (4-Pyridyl)-Ethylene on Silver by Theory Calculations
,”
Spectrochim. Acta, Part A
,
79
(
5
), pp.
1593
1599
.
38.
Chu
,
H.
,
Liu
,
Y.
,
Huang
,
Y.
, and
Zhao
,
Y.
,
2007
, “
A High Sensitive Fiber SERS Probe Based on Silver Nanorod Arrays
,”
Opt. Express
,
15
(
19
), pp.
12230
12239
.
40.
Hsu
,
K. H.
,
Back
,
J. H.
,
Fung
,
K.
,
Ferreira
,
P. M.
,
Shim
,
M.
, and
Fang
,
N. X.
,
2010
, “
SERS EM Field Enhancement Study Through Fast Raman Mapping of Sierpinski Carpet Arrays
,”
J. Raman Spectrosc.
,
41
(
10
), pp.
1124
1130
.
You do not currently have access to this content.