Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Minimizing tissue damage during blade cutting is vital for optimal surgical outcomes. However, the elastomeric properties of tissues require that they be considerably deformed before cut initiation, resulting in physical damage. Thus, the blade indentation depth required for cut initiation must be reduced by enhancing the cut-initiation ability of a process. In this study, factors that influence the cut initiation of elastomeric solids are identified by investigating the tensile stress states beneath the blade that trigger cut initiation. Finite element simulations are used to analyze interfacial interactions between the blade and workpiece and their relation to the stress states. Results show that the distribution of the in-plane stretch of the workpiece surface along the blade surface plays a key role in determining the stress states and the resulting cut-initiation ability. The effects of process parameters, including interfacial friction, blade tip geometry, blade motion, and workpiece size, are examined and discussed by analyzing the corresponding in-plane surface stretch distribution. This study offers a fundamental understanding of cut initiation in elastomeric solid cutting for improving surgical cutting tasks.

References

1.
Hu
,
Z.
,
Zhang
,
B.
, and
Sun
,
W.
,
2012
, “
Cutting Characteristics of Biological Soft Tissues
,”
CIRP Ann.
,
61
(
1
), pp.
135
138
.
2.
Chen
,
Z.
,
Zhang
,
Y.
,
Wang
,
C.
, and
Chen
,
B.
,
2021
, “
Understanding the Cutting Mechanisms of Composite Structured Soft Tissues
,”
Int. J. Mach. Tools Manuf.
,
161
, p.
103685
.
3.
Goh
,
S. M.
,
Charalambides
,
M. N.
, and
Williams
,
J. G.
,
2005
, “
On the Mechanics of Wire Cutting of Cheese
,”
Eng. Fract. Mech.
,
72
(
6
), pp.
931
946
.
4.
Gamonpilas
,
C.
,
Charalambides
,
M. N.
, and
Williams
,
J. G.
,
2009
, “
Determination of Large Deformation and Fracture Behaviour of Starch Gels From Conventional and Wire Cutting Experiments
,”
J. Mater. Sci.
,
44
(
18
), pp.
4976
4986
.
5.
Moore
,
J. Z.
,
Malukhin
,
K.
,
Shih
,
A. J.
, and
Ehmann
,
K. F.
,
2011
, “
Hollow Needle Tissue Insertion Force Model
,”
CIRP Ann.
,
60
(
1
), pp.
157
160
.
6.
Gao
,
F.
,
Song
,
Q.
,
Jiang
,
Y.
,
Liu
,
Z.
, and
Hao
,
X.
,
2020
, “
Influence of Biocompatible Hydrophilic Coated Needle on Puncture Process Through a Simulation Method
,”
Procedia CIRP
,
89
, pp.
214
221
.
7.
Uno
,
M.
,
Takai
,
H.
,
Yagi
,
K.
, and
Matsubara
,
S.
,
2020
, “
Surgical Technique for Carotid Endarterectomy: Current Methods and Problems
,”
Neurol. Med. Chir. (Tokyo)
,
60
(
9
), pp.
419
428
.
8.
Borkenstein
,
A. F.
,
Packard
,
R.
,
Dhubhghaill
,
S. N.
,
Lockington
,
D.
,
Donnenfeld
,
E. D.
, and
Borkenstein
,
E. M.
,
2023
, “
Clear Corneal Incision, an Important Step in Modern Cataract Surgery: A Review
,”
Eye (Lond)
,
37
(
14
), pp.
2864
2876
.
9.
McCarthy
,
C. T.
,
Annaidh
,
A. N.
, and
Gilchrist
,
M. D.
,
2010
, “
On the Sharpness of Straight Edge Blades in Cutting Soft Solids: Part II—Analysis of Blade Geometry
,”
Eng. Fract. Mech.
,
77
(
3
), pp.
437
451
.
10.
Hills
,
D. A.
,
Nowell
,
D.
, and
Sackfield
,
A.
,
1993
,
Mechanics of Elastic Contacts
,
Butterworth-Heinemann
,
Oxford, UK
.
11.
Chen
,
R.
,
Chang
,
R. C.
,
Tai
,
B.
,
Huang
,
Y.
,
Ozdoganlar
,
B.
,
Li
,
W.
, and
Shih
,
A.
,
2020
, “
Biomedical Manufacturing: A Review of the Emerging Research and Applications
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110807
.
12.
Xu
,
W.
,
Wang
,
J.
,
Deng
,
Y.
,
Li
,
J.
,
Yan
,
T.
,
Zhao
,
S.
,
Yang
,
X.
,
Xu
,
E.
,
Wang
,
W.
, and
Liu
,
D.
,
2022
, “
Advanced Cutting Techniques for Solid Food: Mechanisms, Applications, Modeling Approaches, and Future Perspectives
,”
Compr. Rev. Food Sci. Food Saf.
,
21
(
2
), pp.
1568
1597
.
13.
Zhou
,
D.
,
Claffee
,
M. R.
,
Lee
,
K. M.
, and
McMurray
,
G. V.
,
2006
, “
Cutting, ‘By Pressing and Slicing’, Applied to Robotic Cutting Bio-Materials. I. Modeling of Stress Distribution
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
2896
2901
.
14.
Zhou
,
D.
,
Claffee
,
M. R.
,
Lee
,
K. M.
, and
McMurray
,
G. V.
,
2006
, “
Cutting, ‘By Pressing and Slicing’, Applied to Robotic Cutting Bio-Materials. II. Force During Slicing and Pressing Cuts
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation
,
Orlando, FL
,
May 15–19
, pp.
2256
2261
.
15.
Zhou
,
D.
, and
McMurray
,
G.
,
2010
, “
Modeling of Blade Sharpness and Compression Cut of Biomaterials
,”
Robotica
,
28
(
2
), pp.
311
319
.
16.
McCarthy
,
C. T.
,
Hussey
,
M.
, and
Gilchrist
,
M. D.
,
2007
, “
On the Sharpness of Straight Edge Blades in Cutting Soft Solids: Part I—Indentation Experiments
,”
Eng. Fract. Mech.
,
74
(
14
), pp.
2205
2224
.
17.
Reyssat
,
E.
,
Tallinen
,
T.
,
Le Merrer
,
M.
, and
Mahadevan
,
L.
,
2012
, “
Slicing Softly With Shear
,”
Phys. Rev. Lett.
,
109
(
24
), pp.
244301
.
18.
Chaudhury
,
M.
,
2012
, “
A Cut Above the Rest
,”
Physics
,
5
, pp.
139
.
19.
Liu
,
Y.
,
Hui
,
C.
, and
Hong
,
W.
,
2021
, “
A Clean Cut
,”
Extreme Mech. Lett.
,
46
, p.
101343
.
20.
Hainsworth
,
S. V.
,
Delaney
,
R. J.
, and
Rutty
,
G. N.
,
2008
, “
How Sharp Is Sharp? Towards Quantification of the Sharpness and Penetration Ability of Kitchen Knives Used in Stabbings
,”
Int. J. Legal Med.
,
122
(
4
), pp.
281
291
.
21.
Pramudita
,
J.
,
Yamada
,
T.
,
Shimizu
,
Y.
,
Tanabe
,
Y.
,
Ito
,
M.
, and
Watanabe
,
R.
,
2015
, “
Deformation Behavior of Skin Simulant During Penetration of Blunt Object
,”
J. Jpn. Soc. Exp. Mech.
,
15
, pp.
s111
s116
.
22.
Destrade
,
M.
,
Gilchrist
,
M. D.
,
Murphy
,
J. G.
,
Rashid
,
B.
, and
Saccomandi
,
G.
,
2015
, “
Extreme Softness of Brain Matter in Simple Shear
,”
Int. J. Non Linear Mech.
,
75
, pp.
54
58
.
23.
Balbi
,
V.
,
Trotta
,
A.
,
Destrade
,
M.
, and
Ní Annaidh
,
A.
,
2019
, “
Poynting Effect of Brain Matter in Torsion
,”
Soft Matter
,
15
(
25
), pp.
5147
5153
.
24.
Owen
,
B.
,
Bojdo
,
N.
,
Jivkov
,
A.
,
Keavney
,
B.
, and
Revell
,
A.
,
2018
, “
Structural Modelling of the Cardiovascular System
,”
Biomech. Model. Mechanobiol.
,
17
(
5
), pp.
1217
1242
.
25.
de Rooij
,
R.
, and
Kuhl
,
E.
,
2016
, “
Constitutive Modeling of Brain Tissue: Current Perspectives
,”
ASME Appl. Mech. Rev.
,
68
(
1
), p.
010801
.
26.
Wu
,
G.
,
2016
, “
The Mechanisms of Rubber Abrasion
,” Ph.D. thesis,
Queen Mary University of London
,
London, UK
.
27.
Laurent
,
S.
,
Girerd
,
X.
,
Mourad
,
J. J.
,
Lacolley
,
P.
,
Beck
,
L.
,
Boutouyrie
,
P.
,
Mignot
,
J. P.
, and
Safar
,
M.
,
1994
, “
Elastic Modulus of the Radial Artery Wall Material is Not Increased in Patients With Essential Hypertension
,”
Arterioscler Thromb.
,
14
(
7
), pp.
1223
1231
.
28.
Wang
,
D.
,
Song
,
Q.
,
Liu
,
Z.
, and
Wan
,
Y.
,
2018
, “
Cutting Characteristics of Porcine Tenderloin Tissue Along Tangential Direction of Surface
,”
Int. J. Adv. Manuf. Technol.
,
98
(
1–4
), pp.
17
27
.
29.
Barnett
,
A. C.
,
Lee
,
Y.
, and
Moore
,
J. Z.
,
2016
, “
Fracture Mechanics Model of Needle Cutting Tissue
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
011005
.
30.
Spagnoli
,
A.
,
Terzano
,
M.
,
Brighenti
,
R.
,
Artoni
,
F.
, and
Ståhle
,
P.
,
2018
, “
The Fracture Mechanics in Cutting: A Comparative Study on Hard and Soft Polymeric Materials
,”
Int. J. Mech. Sci.
,
148
, pp.
554
564
.
31.
Kerl
,
J.
,
Parittotokkaporn
,
T.
,
Frasson
,
L.
,
Oldfield
,
M.
,
Rodriguez y Baena
,
F.
, and
Beyrau
,
F.
,
2012
, “
Tissue Deformation Analysis Using a Laser Based Digital Image Correlation Technique
,”
J. Mech. Behav. Biomed. Mater.
,
6
, pp.
159
165
.
32.
Oldfield
,
M.
,
Burrows
,
C.
,
Kerl
,
J.
,
Frasson
,
L.
,
Parittotokkaporn
,
T.
,
Beyrau
,
F.
, and
Rodriguez y Baena
,
F.
,
2014
, “
Highly Resolved Strain Imaging During Needle Insertion: Results With a Novel Biologically Inspired Device
,”
J. Mech. Behav. Biomed. Mater.
,
30
, pp.
50
60
.
33.
Li
,
D.
,
Yeh
,
J.
,
Putra
,
K.
, and
Shih
,
A.
,
2017
, “
Optical Measurement of Tissue Deformation in Needle Insertion
,”
Procedia CIRP
,
65
, pp.
175
179
.
34.
Li
,
A. D. R.
,
Putra
,
K. B.
,
Chen
,
L.
,
Montgomery
,
J. S.
, and
Shih
,
A.
,
2020
, “
Mosquito Proboscis-Inspired Needle Insertion to Reduce Tissue Deformation and Organ Displacement
,”
Sci. Rep.
,
10
(
1
), p.
12248
.
35.
Behroozinia
,
P.
,
Mirzaeifar
,
R.
, and
Taheri
,
S.
,
2019
, “
A Review of Fatigue and Fracture Mechanics With a Focus on Rubber-Based Materials
,”
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl.
,
233
(
5
), pp.
1005
1019
.
36.
Shergold
,
O. A.
, and
Fleck
,
N. A.
,
2004
, “
Mechanisms of Deep Penetration of Soft Solids, With Application to the Injection and Wounding of Skin
,”
Proc. R. Soc. A
,
460
(
2050
), pp.
3037
3058
.
37.
Atkins
,
A. G.
,
Xu
,
X.
, and
Jeronimidis
,
G.
,
2004
, “
Cutting, by ‘Pressing and Slicing,’ of Thin Floppy Slices of Materials Illustrated by Experiments on Cheddar Cheese and Salami
,”
J. Mater. Sci.
,
39
(
8
), pp.
2761
2766
.
38.
Atkins
,
T.
,
2009
,
The Science and Engineering of Cutting
,
Butterworth-Heinemann
,
Oxford, UK
.
39.
Jamdagni
,
P.
, and
Jia
,
Y.
,
2021
, “
Robotic Slicing of Fruits and Vegetables: Modeling the Effects of Fracture Toughness and Knife Geometry
,”
Proceedings of the 2021 IEEE International Conference on Robotics and Automation
,
Xi’an, China
,
May 30–June 5
, pp.
6607
6613
.
40.
Mora
,
S.
, and
Pomeau
,
Y.
,
2020
, “
Cutting and Slicing Weak Solids
,”
Phys. Rev. Lett.
,
125
(
3
), p.
038002
.
You do not currently have access to this content.