Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Additive manufacturing/3D printing (AM/3DP) has revolutionized part production by enabling the creation of intricate internal structures and complex geometries from diverse materials directly from digital design files. Among powder-based metal AM/3DP methods, selective laser melting (SLM) is widely used in advanced applications such as biomedical devices and aerospace parts. Despite considerable progress in AM/3DP and SLM, at present, challenges in print quality persist, and vast resources for post-production quality assessment are allocated. The quality of SLM prints is influenced by various process and design parameters, such as the accuracy of hatch angle deposition, laser intensity/power, scanning speed of the laser beam, print line spacing, layer depth, printing chamber conditions, and the material's physical and chemical properties. Direct ultrasonic non-destructive evaluation (NDE) offers comprehensive internal inspection and real-time data acquisition ability; however, in AM/3DP, it faces severe limitations due to a build's intricate internal and external geometric features. In the current study, we present a phononic crystal artifact (PCA)-based real-time ultrasonic NDE quality monitoring framework and show offline its utility in detecting and evaluating hatch angle variations, a critical process parameter. A PCA is substantially simpler and smaller than the actual build but represents its critical geometric and structural intricacies and mechanical properties. The current offline study demonstrates that hatch angle variations can be monitored from ultrasonic responses' spectral modal frequency peaks and wave dispersion relations.

References

1.
Saleh Alghamdi
,
S.
,
John
,
S.
,
Roy Choudhury
,
N.
, and
Dutta
,
N. K.
,
2021
, “
Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges
,”
Polymers
,
13
(
5
), p.
753
.
2.
Sefene
,
E. M.
,
2022
, “
State-of-the-Art of Selective Laser Melting Process: A Comprehensive Review
,”
J. Manuf. Syst.
,
63
, pp.
250
274
.
3.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T. Q.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B
,
143
, pp.
172
196
.
4.
Yang
,
G.
,
Xie
,
Y.
,
Zhao
,
S.
,
Qin
,
L.
,
Wang
,
X.
, and
Wu
,
B.
,
2022
, “
Quality Control: Internal Defects Formation Mechanism of Selective Laser Melting Based on Laser-Powder-Melt Pool Interaction: A Review
,”
Chin. J. Mech. Eng.
,
1
(
3
), p.
100037
.
5.
Galy
,
C.
,
Le Guen
,
E.
,
Lacoste
,
E.
, and
Arvieu
,
C.
,
2018
, “
Main Defects Observed in Aluminum Alloy Parts Produced by SLM: From Causes to Consequences
,”
Addit. Manuf.
,
22
, pp.
165
175
.
6.
Coeck
,
S.
,
Bisht
,
M.
,
Plas
,
J.
, and
Verbist
,
F.
,
2019
, “
Prediction of Lack of Fusion Porosity in Selective Laser Melting Based on Melt Pool Monitoring Data
,”
Addit. Manuf.
,
25
, pp.
347
356
.
7.
Forien
,
J.-B.
,
Calta
,
N. P.
,
DePond
,
P. J.
,
Guss
,
G. M.
,
Roehling
,
T. T.
, and
Matthews
,
M. J.
,
2020
, “
Detecting Keyhole Pore Defects and Monitoring Process Signatures During Laser Powder Bed Fusion: A Correlation Between In Situ Pyrometry and Ex Situ X-Ray Radiography
,”
Addit. Manuf.
,
35
, p.
101336
.
8.
Ye
,
Z.
,
Liu
,
C.
,
Tian
,
W.
, and
Kan
,
C.
,
2021
, “
In-Situ Point Cloud Fusion for Layer-Wise Monitoring of Additive Manufacturing
,”
J. Manuf. Syst.
,
61
, pp.
210
222
.
9.
America Makes & ANSI Additive Manufacturing Standardization Collaborative (AMSC)
,
2023
, Standardization Roadmap for Additive Manufacturing Version 3.0.
10.
Okarma
,
K.
, and
Fastowicz
,
J.
,
2020
, “Computer Vision Methods for Non-destructive Quality Assessment in Additive Manufacturing,”
Progress in Computer Recognition Systems
,
R.
Burduk
,
M.
Kurzynski
, and
M.
Wozniak
, eds.,
Springer International Publishing
,
Cham
, pp.
11
20
.
11.
Szymanik
,
B.
,
Psuj
,
G.
,
Hashemi
,
M.
, and
Lopato
,
P.
,
2021
, “
Detection and Identification of Defects in 3D-Printed Dielectric Structures Via Thermographic Inspection and Deep Neural Networks
,”
Materials
,
14
(
15
), p.
4168
.
12.
Wang
,
P.
,
Tan
,
X.
,
He
,
C.
,
Nai
,
M. L. S.
,
Huang
,
R.
,
Tor
,
S. B.
, and
Wei
,
J.
,
2018
, “
Scanning Optical Microscopy for Porosity Quantification of Additively Manufactured Components
,”
Addit. Manuf.
,
21
, pp.
350
358
.
13.
Hossain
,
M. S.
, and
Taheri
,
H.
,
2020
, “
In Situ Process Monitoring for Additive Manufacturing Through Acoustic Techniques
,”
J. Mater. Eng. Perform.
,
29
(
10
), pp.
6249
6262
.
14.
Lopez
,
A.
,
Bacelar
,
R.
,
Pires
,
I.
,
Santos
,
T. G.
,
Sousa
,
J. P.
, and
Quintino
,
L.
,
2018
, “
Non-destructive Testing Application of Radiography and Ultrasound for Wire and Arc Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
298
306
.
15.
Girard
,
J. M.
,
2024
, “
Fast Error Detection Method for Additive Manufacturing Process Monitoring Using Structured Light Three Dimensional Imaging Technique
,”
Thesis
,
Purdue University Graduate School
,
West Lafayette, IN
.
16.
Opitz
,
J.
,
Porstmann
,
V.
,
Schreiber
,
L.
,
Schmalfuß
,
T.
,
Lehmann
,
A.
,
Naumann
,
S.
,
Schallert
,
R.
, et al
,
2022
, “Optical Coherence Tomography as Monitoring Technology for the Additive Manufacturing of Future Biomedical Parts,”
Handbook of Nondestructive Evaluation 4.0
,
N.
Meyendorf
,
N.
Ida
,
R.
Singh
, and
J.
Vrana
, eds.,
Springer International Publishing
,
Cham
, pp.
859
881
.
17.
Khosravani
,
M. R.
,
Schüürmann
,
J.
,
Berto
,
F.
, and
Reinicke
,
T.
,
2021
, “
On the Post-processing of 3D-Printed ABS Parts
,”
Polymers
,
13
(
10
), p.
1559
.
18.
Rozin
,
E. H.
,
Sultan
,
T.
,
Taheri
,
H.
, and
Cetinkaya
,
C.
,
2023
, “
Ultrasonic Evaluation of Laser Scanning Speed Effect on the Spectral Properties of Three-Dimensional-Printed Metal Phononic Crystal Artifacts
,”
3D Print. Addit. Manuf.
,
11
(
3
), pp.
e1087
e1099
.
19.
Cetinkaya
,
C.
, and
Vakakis
,
A. F.
,
1996
, “
Transient Axisymmetric Stress Wave Propagation in Weakly Coupled Layered Structures
,”
J. Sound Vib.
,
194
(
3
), pp.
389
416
.
20.
Cetinkaya
,
C.
,
Vakakis
,
A. F.
, and
El-Raheb
,
M.
,
1995
, “
Axisymmetric Elastic Waves in Weakly Coupled Layered Media of Infinite Radial Extent
,”
J. Sound Vib.
,
182
(
2
), pp.
283
302
.
21.
Cetinkaya
,
C.
,
1999
, “
Localization of Longitudinal Waves in Bi-periodic Elastic Structures With Disorder
,”
J. Sound Vib.
,
221
(
1
), pp.
49
66
.
22.
Mead
,
D. M.
,
1996
, “
Wave Propagation in Continuous Periodic Structures: Research Contributions From Southampton, 1964–1995
,”
J. Sound Vib.
,
190
(
3
), pp.
495
524
.
23.
Xu
,
X.
,
Vallabh
,
C. K. P.
,
Cleland
,
Z. J.
, and
Cetinkaya
,
C.
,
2017
, “
Phononic Crystal Artifacts for Real-Time In Situ Quality Monitoring in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091001
.
24.
Sutopa
,
M. S.
,
Sultan
,
T.
,
Rozin
,
E. H.
,
Xu
,
X.
,
Gardan
,
J.
, and
Cetinkaya
,
C.
,
2023
, “
Monitoring for the Effects of Extruder Nozzle Temperature on the Micro-mechanical Properties of 3D Printed Phononic Artifacts
,”
J. Manuf. Process.
,
98
, pp.
337
350
.
25.
Rozin
,
E. H.
,
Sultan
,
T.
,
Taheri
,
H.
, and
Cetinkaya
,
C.
,
2023
, “
Detecting Selective Laser Melting Beam Power From Ultrasonic Temporal and Spectral Responses of Phononic Crystal Artifacts Toward In-Situ Real-Time Quality Monitoring
,”
3D Print. Addit. Manuf.
26.
Xu
,
X.
,
Vallabh
,
C. K. P.
,
Krishnan
,
A.
,
Volk
,
S.
, and
Cetinkaya
,
C.
,
2019
, “
In-Process Thread Orientation Monitoring in Additive Manufacturing
,”
3D Print. Addit. Manuf.
,
6
(
1
), pp.
21
30
.
27.
Sutopa
,
M. S.
,
Sultan
,
T.
,
Rozin
,
E. H.
, and
Cetinkaya
,
C.
,
2023
, “
Quantifying the Anisotropic Elasticity of 3D Printed Phononic Artifacts With Ultrasound for Process Monitoring
,”
J. Manuf. Process.
,
101
, pp.
1188
1204
.
28.
Zhang
,
Z.
,
Chu
,
B.
,
Wang
,
L.
, and
Lu
,
Z.
,
2019
, “
Comprehensive Effects of Placement Orientation and Scanning Angle on Mechanical Properties and Behavior of 316L Stainless Steel Based on the Selective Laser Melting Process
,”
J. Alloys Compd.
,
791
, pp.
166
175
.
29.
Sultan
,
T.
,
Paul
,
S.
,
Hasan Rozin
,
E.
,
Canino
,
C.
,
Tseng
,
Y.-C.
, and
Cetinkaya
,
C.
,
2022
, “
Ultrasonic Characterization of Complete Anisotropic Elasticity Coefficients of Compressed Oral Solid Dosage Forms
,”
Int. J. Pharm.
,
623
, p.
121922
.
30.
Sultan
,
T.
,
Paul
,
S.
,
Rozin
,
E. H.
,
Tseng
,
Y.-C.
,
Bazzocchi
,
M. C. F.
, and
Cetinkaya
,
C.
,
2022
, “
Micro-viscoelastic Characterization of Compressed Oral Solid Dosage Forms With Ultrasonic Wave Dispersion Analysis
,”
AAPS PharmSciTech
,
24
(
1
), p.
22
.
31.
Reinhardt
,
A.
,
Pastureaud
,
T.
,
Ballandras
,
S.
, and
Laude
,
V.
,
2003
, “
Scattering Matrix Method for Modeling Acoustic Waves in Piezoelectric, Fluid, and Metallic Multilayers
,”
J. Appl. Phys.
,
94
(
10
), pp.
6923
6931
.
32.
Karabutov
,
A. A.
, and
Podymova
,
N. B.
,
2014
, “
Quantitative Analysis of the Influence of Voids and Delaminations on Acoustic Attenuation in CFRP Composites by the Laser-Ultrasonic Spectroscopy Method
,”
Compos. Part B
,
56
, pp.
238
244
.
33.
Álvarez-Arenas
,
T. G.
, and
Camacho
,
J.
,
2019
, “
Air-Coupled and Resonant Pulse-Echo Ultrasonic Technique
,”
Sensors (Basel)
,
19
(
10
), p.
2221
.
34.
Kim
,
C.
,
Yin
,
H.
,
Shmatok
,
A.
,
Prorok
,
B. C.
,
Lou
,
X.
, and
Matlack
,
K. H.
,
2021
, “
Ultrasonic Nondestructive Evaluation of Laser Powder Bed Fusion 316L Stainless Steel
,”
Addit. Manuf.
,
38
, p.
101800
.
You do not currently have access to this content.