Abstract

ASTM E1921-2019b, Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, Annex 1, describes the determination of the reference temperature T0,X for a loading rate X for ferritic steels in the transition range, where X corresponds to the logarithm of the average loading rate for the tests performed, rounded to the nearest integer. Within the framework of three research projects on dynamic crack initiation and crack arrest, funded by the German government, fracture mechanics tests using specimens of 22NiMoCr3-7 steel (A 508 Grade 2 Cl.1) were performed in a range from 102 MPa√m s−1 to 106 MPa√m s−1 at different temperatures in the ductile to brittle transition region. The Weibull stress rate was calculated from the results of a numerical analysis of tests with 1-inch compact tension (1T C(T)) specimens. The modified three-parameter Beremin model of Petti and Dodds was used, since this approach is congruent with the Master Curve method. In addition to the stress parameters corresponding to Kmin and K0, the Weibull exponent can be calibrated using the experimental results. The analysis shows the effect of the Weibull exponent on the time-dependent Weibull stress rate for a dynamic 1T C(T) test. Contrary to the loading rate calculated from KJc divided by the time to cleavage according to ASTM E1921, the Weibull stress rate decreases with increasing plastic behavior. This has to be considered when the dynamic reference temperature T0,X is determined using results from tests with large plastic contribution.

References

1.
Böhme
W.
,
Mayer
U.
,
Reichert
T.
,
Offermanns
S.
,
Allmendinger
K.
,
Hug
M.
,
Schüler
J.
, and
Siegele
D.
,
Überprüfung und Weiterentwicklung von Bewertungsmethoden für dynamische Rissinitiierung und Rissarrest [Verification and Further Development of Assessment Methods for Dynamic Crack Initiation and Crack Arrest], BMWi-Report 150 1368
(
Freiburg im Breisgau, Germany
:
Fraunhofer IWM
,
2012
), https://doi.org/10.2314/GBV:745745466
2.
Mayer
U.
,
Analysis and Validation of Fracture Mechanical Assessment Methods under Dynamic Loading - Tests with Compact Tension Specimens and Identification of a Parameter for the Crack Loading Rate, BMWi-Report 1501472B
(
Stuttgart, Germany
:
Materialprüfungsanstalt Universität Stuttgart
,
2018
), https://doi.org/10.2314/GBV:1026853893
3.
Standard Test Method for Determining Plane-Strain Crack-Arrest Fracture Toughness, KIa, of Ferritic Steels
, ASTM E1221-12a(2018) (
West Conshohocken, PA
:
ASTM International
, approved November 1,
2018
), https://doi.org/10.1520/E1221-12AR18
4.
Mayer
U.
and
Offermanns
S.
, “
Definition of Loading Rate and Effects on Determination of Dynamic Fracture Toughness and Transition Temperature T0, X According to ASTM E1921 at Elevated Loading Rates
,” in
22nd Conference on Structural Mechanics in Reactor Technology
(
International Association for Structural Mechanics in Reactor Technology
,
2013
).
5.
Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range
, ASTM E1921-19b (
West Conshohocken, PA
:
ASTM International
, approved July 15,
2019
), https://doi.org/10.1520/E1921-19B
6.
Roos
E.
,
Eisele
U.
,
Lammert
R.
,
Restemeyer
D.
,
Schuler
X.
,
Seebich
H.-P.
,
Seidenfuß
M.
,
Silcher
H.
, and
Stumpfrock
L.
,
Kritische Überprüfung des Masterkurven-Ansatzes im Hinblick auf die Anwendung bei deutschen Kernkraftwerken, BMWi-Report 1501 240
(
Stuttgart, Germany
:
Materialprüfungsanstalt Universität Stuttgart
,
2006
).
7.
Standard Test Method for Linear-Elastic Plane-Strain Fracture Toughness KIc of Metallic Materials
, ASTM E399-19 (
West Conshohocken, PA
:
ASTM International
, approved June 15,
2019
), https://doi.org/10.1520/E0399-19
8.
Standard Test Method for Measurement of Fracture Toughness
, ASTM E1820-18ae1 (
West Conshohocken, PA
:
ASTM International
, approved November 1, 2018, editorially corrected March
2019
), https://doi.org/10.1520/E1820-18AE01
9.
Fracture Mechanics Toughness Tests, Part 3, Method for Determination of Fracture Toughness of Metallic Materials at Rates of Increase in Stress Intensity Factor Greater than 3.0 MPa m0.5 s−1
, BS 7448-3:2005 (
London
:
British Standards Institution
,
2007
).
10.
Mayer
U.
,
Reichert
T.
, and
Tlatlik
J.
, “
Fracture Mechanics at Elevated Loading Rates in the Ductile to Brittle Transition Region
,” in
ASME 2017 Pressure Vessels and Piping Conference
(
New York
:
American Society of Mechanical Engineers
,
2017
), PVP2017-65358.
11.
Klenk
A.
,
Link
T.
,
Mayer
U.
, and
Schüle
M.
, “
Criteria for Crack Initiation in Elastic Plastic Materials under Different Loading Rates
,” in
10th Biennial European Conference on Fracture
(
Warrington, UK
:
EMAS Publications
,
1994
),
431
436
.
12.
Mayer
U.
, “
Determination of Dynamic Fracture Toughness at High Loading Rates
,” in
International Mechanical Engineering Congress and Exposition
(
New York
:
American Society of Mechanical Engineers
,
2012
), IMECE2012-85383.
13.
Mayer
U.
, “
Analysis of the Distribution of Fracture Toughness Values Measured with 1T C(T) Specimens at Loading Rates Higher than dK/dt = 105 MPa√m s−1
,”
Procedia Structural Integrity
2
(
2016
):
1569
1576
, https://doi.org/10.1016/j.prostr.2016.06.199
14.
Schindler
H.
and
Kalkhof
D.
, “
A Closer Look at Effects of the Loading Rate on Fracture Toughness in the Ductile-to-Brittle Transition Regime of a Ferritic Steel
,”
Journal of Testing and Evaluation
43
, no. 
3
(May
2015
):
507
516
, https://doi.org/10.1520/JTE20120321
15.
Wallin
K.
,
Fracture Toughness of Engineering Materials: Estimation and Application
(
Warrington, UK
:
EMAS Publications
,
2011
).
16.
Wallin
K.
and
Rintamaa
R.
, “
Master Curve Based Correlation between Static Initiation Toughness KIC and Crack Arrest Toughness KIa
,” in
24th MPA-Seminar
(
Stuttgart, Germany
:
Universität Stuttgart
,
1998
).
17.
Wallin
K.
,
Optimized Estimation of the Weibull Distribution Parameters, VTT Research Report 604
(
Espoo, Finland
:
Technical Research Centre of Finland
,
1989
).
18.
Tlatlik
J.
and
Reichert
T.
, “
Correlation of Fractographic Examinations with Numerical Calculations Regarding Dynamic Fracture
,” in
Pressure Vessels and Piping Conference
(
New York
:
American Society of Mechanical Engineers
,
2017
), PVP2017-65042.
19.
Petti
J. P.
and
Dodds Jr
R. H.
., “
Coupling of the Weibull Stress Model and Macroscale Models to Predict Cleavage Fracture
,”
Engineering Fracture Mechanics
71
, nos. 
13–14
(September
2004
):
2079
2103
, https://doi.org/10.1016/j.engfracmech.2003.08.004
This content is only available via PDF.
You do not currently have access to this content.