Abstract

Additive manufacturing (AM) method has attracted huge interest in the past decade due to its ability in building complicated geometries with a much lower cost than conventionally produced parts. In AM, the final mechanical properties can be controlled by the AM process parameters. In other words, the AM process parameters control the amount of energy that is transferred into the powder and consequently the resulting microstructure. In this study, the correlation between melt pool geometry and mechanical properties of selective laser melted (SLM) Ti–6Al–4V samples is investigated.

References

1.
Jia
,
Q.
, and
Gu
,
D.
,
2014
, “
Selective Laser Melting Additive Manufacturing of Inconel 718 Superalloy Parts: Densification, Microstructure and Properties
,”
J. Alloys Compd.
,
585
, pp.
713
721
.
2.
Aboulkhair
,
N. T.
,
Everitt
,
N. M.
,
Ashcroft
,
I.
, and
Tuck
,
C.
,
2014
, “
Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting
,”
Addit. Manuf.
,
1
, pp.
77
86
.
3.
Thijs
,
L.
,
Verhaeghe
,
F.
,
Craeghs
,
T.
,
Van Humbeeck
,
J.
, and
Kruth
,
J.-P.
,
2010
, “
A Study of the Microstructural Evolution During Selective Laser Melting of Ti–6Al–4V
,”
Acta Mater.
,
58
(
9
), pp.
3303
3312
.
4.
Rashid
,
R.
,
Masood
,
S. H.
,
Ruan
,
D.
,
Palanisamy
,
S.
,
Rashid
,
R. R.
, and
Brandt
,
M.
,
2017
, “
Effect of Scan Strategy on Density and Metallurgical Properties of 17-4PH Parts Printed by Selective Laser Melting (SLM)
,”
J. Mater. Process. Technol.
,
249
, pp.
502
511
.
5.
Murr
,
L.
,
Quinones
,
S.
,
Gaytan
,
S.
,
Lopez
,
M.
,
Rodela
,
A.
,
Martinez
,
E.
,
Hernandez
,
D.
,
Martinez
,
E.
,
Medina
,
F.
, and
Wicker
,
R.
,
2009
, “
Microstructure and Mechanical Behavior of Ti–6Al–4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
20
32
.
6.
Facchini
,
L.
,
Magalini
,
E.
,
Robotti
,
P.
,
Molinari
,
A.
,
Höges
,
S.
, and
Wissenbach
,
K.
,
2010
, “
Ductility of a Ti-6Al-4V Alloy Produced by Selective Laser Melting of Prealloyed Powders
,”
Rapid Prototyp. J.
,
16
(
6
), pp.
450
459
.
7.
Facchini
,
L.
,
Magalini
,
E.
,
Robotti
,
P.
, and
Molinari
,
A.
,
2009
, “
Microstructure and Mechanical Properties of Ti-6Al-4V Produced by Electron Beam Melting of pre-Alloyed Powders
,”
Rapid Prototyp. J.
,
15
(
3
), pp.
171
178
.
8.
Chlebus
,
E.
,
Kuźnicka
,
B.
,
Kurzynowski
,
T.
, and
Dybała
,
B.
,
2011
, “
Microstructure and Mechanical Behaviour of Ti–6Al–7Nb Alloy Produced by Selective Laser Melting
,”
Mater. Charact.
,
62
(
5
), pp.
488
495
.
9.
Mirkoohi
,
E.
,
Ning
,
J.
,
Bocchini
,
P.
,
Fergani
,
O.
,
Chiang
,
K.-N.
, and
Liang
,
S.
,
2018
, “
Thermal Modeling of Temperature Distribution in Metal Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties
,”
J. Manuf. Mater. Process.
,
2
(
3
), p.
63
.
10.
Tabei
,
A.
,
Mirkoohi
,
E.
,
Garmestani
,
H.
, and
Liang
,
S.
,
2019
, “
Modeling of Texture Development in Additive Manufacturing of Ni-Based Superalloys
,”
Int. J. Adv. Manuf. Technol.
, pp.
1
10
.
11.
Mirkoohi
,
E.
,
Sievers
,
D. E.
,
Garmestani
,
H.
,
Chiang
,
K.
, and
Liang
,
S. Y.
,
2019
, “
Three-dimensional Semi-Elliptical Modeling of Melt Pool Geometry Considering Hatch Spacing and Time Spacing in Metal Additive Manufacturing
,”
J. Manuf. Process.
,
45
, pp.
532
543
.
12.
Wang
,
Z.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2016
, “
Effect of Processing Parameters on Microstructure and Tensile Properties of Austenitic Stainless Steel 304L Made by Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
110
, pp.
226
235
.
13.
Mahdavi
,
M.
,
Hoar
,
E.
,
Sievers
,
D. E.
,
Chong
,
Y.
,
Tsuji
,
N.
,
Liang
,
S.
, and
Garmestani
,
H.
,
2019
, “
Statistical Representation of the Microstructure and Strength for a two-Phase Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
759
, pp.
313
319
.
14.
Yang
,
Q.
,
Zhang
,
P.
,
Cheng
,
L.
,
Min
,
Z.
,
Chyu
,
M.
, and
To
,
A. C.
,
2016
, “
Finite Element Modeling and Validation of Thermomechanical Behavior of Ti-6Al-4V in Directed Energy Deposition Additive Manufacturing
,”
Addit. Manuf.
,
12
, pp.
169
177
.
15.
Cao
,
J.
,
Gharghouri
,
M. A.
, and
Nash
,
P.
,
2016
, “
Finite-element Analysis and Experimental Validation of Thermal Residual Stress and Distortion in Electron Beam Additive Manufactured Ti-6Al-4V Build Plates
,”
J. Mater. Process. Technol.
,
237
, pp.
409
419
.
16.
Nikoukar
,
M.
,
Patil
,
N.
,
Pal
,
D.
, and
Stucker
,
B.
,
2013
, “
Methods for Enhancing the Speed of Numerical Calculations for the Prediction of the Mechanical Behavior of Parts Made Using Additive Manufacturing
,”
Proceedings of the Solid Freeform Fabrication Symposium
, pp.
12
14
.
17.
Mahdavi
,
M.
,
Hoar
,
E.
,
Sievers
,
D. E.
,
Liang
,
S.
, and
Garmestani
,
H.
,
2019
, “
Inverse Modeling of Inelastic Properties of a two-Phase Microstructure
,”
Eng. Res. Express
,
1
(
1
), p.
015026
.
18.
Mahdavi
,
M.
,
Yousefi
,
E.
,
Baniassadi
,
M.
,
Karimpour
,
M.
, and
Baghani
,
M.
,
2017
, “
Effective Thermal and Mechanical Properties of Short Carbon Fiber/Natural Rubber Composites as a Function of Mechanical Loading
,”
Appl. Therm. Eng.
,
117
, pp.
8
16
.
19.
Chavoshnejad
,
P.
, and
Razavi
,
M. J.
,
2020
, “
Effect of the Interfiber Bonding on the Mechanical Behavior of Electrospun Fibrous Mats
,”
Sci. Rep.
,
10
(
1
), pp.
1
10
.
20.
Riahipour
,
R.
,
Sahraei
,
A. A.
,
van de Werken
,
N.
,
Tehrani
,
M.
,
Abrinia
,
K.
, and
Baniassadi
,
M.
,
2018
, “
Improving Flame-Retardant, Thermal, and Mechanical Properties of an Epoxy Using Halogen-Free Fillers
,”
Sci. Eng. Compos. Mater.
,
25
(
5
), pp.
939
946
.
21.
Yan
,
W.
,
Lian
,
Y.
,
Yu
,
C.
,
Kafka
,
O. L.
,
Liu
,
Z.
,
Liu
,
W. K.
, and
Wagner
,
G. J.
,
2018
, “
An Integrated Process–Structure–Property Modeling Framework for Additive Manufacturing
,”
Comput. Methods Appl. Mech. Eng.
,
339
, pp.
184
204
.
22.
Shin
,
Y. C.
,
Bailey
,
N.
,
Katinas
,
C.
, and
Tan
,
W.
,
2018
, “
Predictive Modeling Capabilities From Incident Powder and Laser to Mechanical Properties for Laser Directed Energy Deposition
,”
Comput. Mech.
,
61
(
5
), pp.
617
636
.
23.
Zadpoor
,
A. A.
, and
Hedayati
,
R.
,
2016
, “
Analytical Relationships for Prediction of the Mechanical Properties of Additively Manufactured Porous Biomaterials
,”
J. Biomed. Mater. Res., Part A
,
104
(
12
), pp.
3164
3174
.
24.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Ram
,
G. J.
,
Starr
,
T.
, and
Stucker
,
B.
,
2015
, “
Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting
,”
Mater. Des.
,
86
, pp.
545
554
.
25.
Baufeld
,
B.
,
Van der Biest
,
O.
, and
Gault
,
R.
,
2010
, “
Additive Manufacturing of Ti–6Al–4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties
,”
Mater. Des.
,
31
, pp.
S106
S111
.
26.
Murr
,
L. E.
,
Gaytan
,
S.
,
Ceylan
,
A.
,
Martinez
,
E.
,
Martinez
,
J.
,
Hernandez
,
D.
,
Machado
,
B.
,
Ramirez
,
D.
,
Medina
,
F.
, and
Collins
,
S.
,
2010
, “
Characterization of Titanium Aluminide Alloy Components Fabricated by Additive Manufacturing Using Electron Beam Melting
,”
Acta Mater.
,
58
(
5
), pp.
1887
1894
.
27.
Uhlmann
,
E.
,
Kersting
,
R.
,
Klein
,
T. B.
,
Cruz
,
M. F.
, and
Borille
,
A. V.
,
2015
, “
Additive Manufacturing of Titanium Alloy for Aircraft Components
,”
Procedia CIRP
,
35
, pp.
55
60
.
28.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
,
1992
,
Conduction of Heat in Solids
,
Clarendon press
.
29.
Fu
,
C.
, and
Guo
,
Y.
,
2014
, “
Three-Dimensional Temperature Gradient Mechanism in Selective Laser Melting of Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061004
.
30.
Yang
,
Y.
,
Knol
,
M.
,
Van Keulen
,
F.
, and
Ayas
,
C.
,
2018
, “
A Semi-Analytical Thermal Modelling Approach for Selective Laser Melting
,”
Addit. Manuf.
,
21
, pp.
284
297
.
31.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E.
,
1993
,
Materials Properties Handbook: Titanium Alloys
,
ASM international
.
32.
Yadroitsev
,
I.
, and
Yadroitsava
,
I.
,
2015
, “
Evaluation of Residual Stress in Stainless Steel 316L and Ti6Al4V Samples Produced by Selective Laser Melting
,”
Virtual Phys. Prototyping
,
10
(
2
), pp.
67
76
.
33.
Simonelli
,
M.
,
Tse
,
Y. Y.
, and
Tuck
,
C.
,
2014
, “
Effect of the Build Orientation on the Mechanical Properties and Fracture Modes of SLM Ti–6Al–4V
,”
Mater. Sci. Eng. A
,
616
, pp.
1
11
.
34.
Vrancken
,
B.
,
Thijs
,
L.
,
Kruth
,
J.-P.
, and
Van Humbeeck
,
J.
,
2012
, “
Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties
,”
J. Alloys Compd.
,
541
, pp.
177
185
.
35.
Xu
,
W.
,
Brandt
,
M.
,
Sun
,
S.
,
Elambasseril
,
J.
,
Liu
,
Q.
,
Latham
,
K.
,
Xia
,
K.
, and
Qian
,
M.
,
2015
, “
Additive Manufacturing of Strong and Ductile Ti–6Al–4V by Selective Laser Melting via in Situ Martensite Decomposition
,”
Acta Mater.
,
85
, pp.
74
84
.
36.
Vilaro
,
T.
,
Colin
,
C.
, and
Bartout
,
J.-D.
,
2011
, “
As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting
,”
Metall. Mater. Trans. A
,
42
(
10
), pp.
3190
3199
.
37.
Liu
,
P.
,
Ji
,
Y.
,
Wang
,
Z.
,
Qiu
,
C.
,
Antonysamy
,
A.
,
Chen
,
L.-Q.
,
Cui
,
X.
, and
Chen
,
L.
,
2018
, “
Investigation on Evolution Mechanisms of Site-Specific Grain Structures During Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
257
, pp.
191
202
.
38.
Liu
,
J.
, and
To
,
A. C.
,
2017
, “
Quantitative Texture Prediction of Epitaxial Columnar Grains in Additive Manufacturing Using Selective Laser Melting
,”
Addit. Manuf.
,
16
, pp.
58
64
.
39.
Dong
,
Z.
,
Zhang
,
X.
,
Shi
,
W.
,
Zhou
,
H.
,
Lei
,
H.
, and
Liang
,
J.
,
2018
, “
Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting
,”
Materials
,
11
(
12
), p.
2463
.
40.
Rodrigues
,
T. A.
,
Duarte
,
V.
,
Avila
,
J. A.
,
Santos
,
T. G.
,
Miranda
,
R.
, and
Oliveira
,
J.
,
2019
, “
Wire and arc Additive Manufacturing of HSLA Steel: Effect of Thermal Cycles on Microstructure and Mechanical Properties
,”
Addit. Manuf.
,
27
, pp.
440
450
.
41.
Liverani
,
E.
,
Toschi
,
S.
,
Ceschini
,
L.
, and
Fortunato
,
A.
,
2017
, “
Effect of Selective Laser Melting (SLM) Process Parameters on Microstructure and Mechanical Properties of 316L Austenitic Stainless Steel
,”
J. Mater. Process. Technol.
,
249
, pp.
255
263
.
42.
Mahdavi
,
M.
,
Mirkoohi
,
E.
,
Hoar
,
E.
,
Liang
,
S.
, and
Garmestani
,
H.
,
2020
, “
Prediction of the Deformation Behavior of a Selective Laser-Melted Ti-6Al-4V Alloy as a Function of Process Parameters
,”
Int. J. Adv. Manuf. Technol.
, pp.
1
8
.
You do not currently have access to this content.