Abstract
Digital image correlation (DIC) methods initially were developed in the early 1980s to simplify basic in-plane laboratory experiments, modified in the 1990s to obtain full three-dimensional surface displacements and shape measurements on curved or planar specimens and then extended to interior measurements at the end of the last millennium. The enclosed article provides a brief description of the various digital image correlation methods, followed by a personal perspective regarding recent and future developments utilizing DIC measurements.
Issue Section:
Expert View
Keywords:
digital image correlation methods,
2D-DIC,
stereoDIC,
digital volume correlation,
perspective,
future developments
Topics:
Bone,
Computer simulation,
Computer software,
Displacement,
Imaging,
Resolution (Optics),
Shapes,
Tires,
Modeling,
Algorithms,
Composite materials,
Computerized tomography,
Engineering simulation,
Errors,
Governments,
Simulation,
Strain measurement,
Strength (Materials),
Aerospace industry,
Artificial intelligence,
Buckling,
Calibration,
Concretes,
Density,
Finite element analysis,
Geometry,
Machine learning,
Model validation,
Solid mechanics
References
1.
Sutton
, M. A.
, Wolters
, W. J.
, Peters
, III, W. H.
, Ranson
, W. F.
, and McNeill
, S. R.
, 1983
, “Determination of Displacements Using an Improved Digital Correlation Method”
,” Image Vis. Comput.
, 1
(3
), pp. 1333
–1339
. 2.
Chu
, T. C.
, Ranson
, W. F.
, Sutton
, M. A.
, and Peters
, III, W. H.
, 1985
, “Application of Digital Image Correlation Techniques to Experimental Mechanics
,” Exp. Mech.
, 25
(3
), pp. 232
–245
. 3.
Bruck
, H. A.
, McNeill
, S. R.
, Sutton
, M. A.
, and Peters
, III, W. H.
, 1989
, “Determination of Deformations Using Digital Correlation With the Newton–Raphson Method for Partial Differential Corrections
,” Exp. Mech.
, 29
(3
), pp. 261
–267
. 4.
Luo
, P. F.
, Chao
, Y. J.
, Sutton
, M. A.
, and Peters
, III, W. H.
, 1993
, “Accurate Measurement of Three-Dimensional Deformations in Deformable and Rigid Bodies Using Computer Vision”
,” Exp. Mech.
, 33
(2
), pp. 123
–133
. 5.
Luo
, P. F.
, Chao
, Y. J.
, and Sutton
, M. A.
, 1994
, “Application of Stereo Vision to 3-D Deformation Analysis in Fracture Mechanics
,” Opt. Eng.
, 33
(3
), pp. 981
–990
. 6.
Sutton
, M. A.
, Orteu
, J. J.
, and Schreier
, H. W.
, 2009
, Image Correlation for Shape, Motion and Deformation Measurements
, Springer
, New York.7.
Helm
, J. D.
, McNeill
, S. R.
, and Sutton
, M. A.
, 1996
, “Improved 3-D Image Correlation for Surface Displacement Measurement
,” Opt. Eng.
, 35
(7
), pp. 1911
–1920
. 8.
Sutton
, M. A.
, Matta
, F.
, Rizos
, D.
, Ghorbani
, R.
, Rajan
, S.
, Mollenhauer
, D. H.
, Schreier
, H. W.
, and Lasprilla
, A. O.
, 2017
, “Recent Progress in Digital Image Correlation: Background and Developments Since the 2013 W M Murray Lecture
,” Exp. Mech.
, 57
(1
), pp. 1
–31
. 9.
Helm
, J. D.
, Sutton
, M. A.
, and McNeill
, S. R.
, 2003
, “Deformations in Wide, Center-Notched, Thin Panels. Part I: Three Dimensional Shape and Deformation Measurements by Computer Vision
,” Opt. Eng.
, 42
(5
), pp. 1293
–1305
. 10.
Helm
, J. D.
, Sutton
, M. A.
, and McNeill
, S. R.
, 2003
, “Deformations in Wide, Center-Notched, Thin Panels. Part II: Finite Element Analysis and Comparison to Experimental Measurements
,” Opt. Eng.
, 42
(5
), pp. 1306
–1320
. 11.
Bay
, B. K.
, Smith
, T. S.
, Fyhrie
, D. P.
, and Saad
, M.
, 1999
, “Digital Volume Correlation: Three-Dimensional Strain Mapping Using X-ray Tomography
,” Exp. Mech.
, 39
(3
), pp. 217
–226
. 12.
Bay
, B. K.
, 2008
, “Methods and Applications of Digital Volume Correlation
,” J. Strain Anal. Eng. Des.
, 43
(8
), pp. 745
–760
. 13.
Hung
, Y. Y.
, Lin
, L.
, and Shang
, H. M.
, 2000
, “Practical 3D Computer Vision Techniques and Applications in Measurement and NDT
,” SPIE Int. Soc. Opt. Eng.
, 4221
, pp. 457
–464
. 14.
VIC-EDU Educational StereoDIC Measurement System
, www.correlatedsolutions.com/vic-edu/15.
Sutton
, M. A.
, Yan
, J. H.
, Tiwari
, V.
, Schreier
, H. W.
, and Orteu
, J. J.
, 2008
, “The Effect of Out-of-Plane Motion on 2D and 3D Digital Image Correlation Measurements
,” Opt. Lasers Eng.
, 46
(10
), pp. 746
–757
. 16.
Hild
, F.
, and Roux
, S.
, 2006
, “Digital Image Correlation: From Displacement Measurement to Identification of Elastic Properties—A Review
,” Strain
, 42
(2
), pp. 69
–80
. 17.
Bouterf
, A.
, Buljac
, A.
, Hild
, F.
, Jailin
, C.
, Neggers
, J.
, and Roux
, S.
, 2020
, “Digital Volume Correlation of Laminographic and Tomographic Images: Results and Challenges
,” Virt. Des. Valid.
, 93
, pp. 3
–20
. 18.
Gilat
, A.
Dynamic Mechanics of Materials Laboratory. https://dmm.engineering.osu.edu.19.
Vazquez-Fernandez
, N. I.
, Soares
, G. C.
, Smith
, J. L.
, Seidt
, J. D.
, Isakov
, M.
, Gilat
, A.
, Kuokkala
, V. T.
, and Hokka
, M.
, 2019
, “Adiabatic Heating of Austenitic Stainless Steels at Different Strain Rates
,” J. Dyn. Behav. Mater.
, 5
(8
), pp. 221
–229
. 20.
International Digital Image Correlation Society
, E. M. C.
Jones
, and M. A.
Iadicola
, 2018
, A Good Practices Guide for Digital Image Correlation
. www.idics.org/guide21.
Muir
, C.
, Swaminathan
, B.
, Fields
, K.
, Almansour
, A. S.
, Sevener
, K.
, Smith
, C.
, Presby
, M.
, Kiser
, J. D.
, Pollock
, T. M.
, and Daly
, S.
, 2021
, “A Machine Learning Framework for Damage Mechanism Identification From Acoustic Emissions in Unidirectional SiC/SiC Composites
,” Comput. Mater.
, 7
(1
), pp. 1
–10
. 22.
Fayolle
, X.
, Calloch
, S.
, and Hild
, F.
, 2007
, “Controlling Testing Machines With Digital Image Correlation
,” Exp. Tech.
, 31
(3
), pp. 57
–63
. Copyright © 2022 by ASME
You do not currently have access to this content.