Abstract

The activated slip system of Ti-6Al-4V alloy during the superplastic forming (SPF) was investigated by the in-grain misorientation axes analysis (IGMA), and the mechanisms of slip system activation have been discussed. Depending on the distribution of IGMA, one significant discovery from this study is that all the basal, prismatic, and pyramidal slip systems would be activated. Considering the effective slip systems, Schmid factors, and the Euler angles together, it is suggested that the dominant slip systems not only desired the largest Schmid factors but strongly demand continuous Schmid factors among the adjacent grains. Meanwhile, the estimated critical resolved shear stress (CRSS) on basal <a> and prismatic <a> at the temperature of 920 °C with the strain rate of 10−3 s is given. An original method of roughly estimating dominant slip systems with Euler angles has been introduced, which predicts that grain rotation may change the slip system. Furthermore, the crystal plasticity finite element method (CPFEM) is employed to simulate the evolution of Euler angles, and the grain orientation presents the largest set of significant clusters around the (1¯100) after deformation. Besides, the continuity of the Schmid factor assumption for the activated slip system has also been verified by CPFEM. In addition, the eigenvector corresponding to the eigenvalue λ1 = 1 of Euler angle rotation matrix is calculated to be aligned with the grain rotation axis, which can be applied to describe the grain rotation.

References

1.
Mosleh
,
A. O.
,
Kotov
,
A. D.
,
Vidal
,
V.
,
Mochugovskiy
,
A. G.
,
Velay
,
V.
, and
Mikhaylovskaya
,
A. V.
,
2021
, “
Initial Microstructure Influence on Ti–Al–Mo–V Alloy’s Superplastic Deformation Behavior and Deformation Mechanisms
,”
Mater. Sci. Eng. A
,
802
, p.
140626
.
2.
Sun
,
C.
,
Liu
,
H.
,
Wang
,
X.
,
Hu
,
X.
, and
Jiang
,
S.
,
2021
, “
Microstructure Evolution During Superplastic Deformation Process and Its Impact on Superplastic Behavior of a Mg-Gd-Y-Zn-Zr Alloy
,”
Mater. Charact.
,
172
, p.
110879
.
3.
Taylor
,
S.
,
West
,
G. D.
,
Mogire
,
E.
,
Tang
,
F.
, and
Kotadia
,
H. R.
,
2021
, “
Superplastic Forming Characteristics of AZ41 Magnesium Alloy
,”
Trans. Nonferrous Met. Soc. China
,
31
(
3
), pp.
648
654
.
4.
Li
,
Z.
,
Zhao
,
B.
,
Shao
,
J.
, and
Liu
,
S.
,
2019
, “
Deformation Behavior and Mechanical Properties of Periodic Topological Ti Structures Fabricated by Superplastic Forming/Diffusion Bonding
,”
Int. J. Lightweight Mater. Manuf.
,
2
(
1
), pp.
1
30
.
5.
Aksenov
,
S.
, and
Sorgente
,
D.
,
2020
, “
Determination of Biaxial Stress–Strain Curves for Superplastic Materials by Means of Bulge Forming Tests at Constant Stress
,”
CIRP J. Manuf. Sci. Technol.
,
31
, pp.
618
627
.
6.
Yasmeen
,
T.
,
Shao
,
Z.
,
Zhao
,
L.
,
Gao
,
P.
,
Lin
,
J.
, and
Jiang
,
J.
,
2019
, “
Constitutive Modeling for the Simulation of the Superplastic Forming of TA15 Titanium Alloy
,”
Int. J. Mech. Sci.
,
164
, p.
105178
.
7.
Sorgente
,
D.
,
Palumbo
,
G.
,
Piccininni
,
A.
,
Guglielmi
,
P.
, and
Aksenov
,
S. A.
,
2018
, “
Investigation on the Thickness Distribution of Highly Customized Titanium Biomedical Implants Manufactured by Superplastic Forming
,”
CIRP J. Manuf. Sci. Technol.
,
20
, pp.
29
35
.
8.
Alabort
,
E.
,
Putman
,
D.
, and
Reed
,
R. C.
,
2015
, “
Superplasticity in Ti-6Al-4V: Characterisation, Modelling and Applications
,”
Acta Mater.
,
95
, pp.
428
442
.
9.
Velay
,
V.
,
Matsumoto
,
H.
,
Vidal
,
V.
, and
Chiba
,
A.
,
2016
, “
Behavior Modeling and Microstructural Evolutions of Ti-6Al-4V Alloy Under Hot Forming Conditions
,”
Int. J. Mech. Sci.
,
108–109
, pp.
1
13
.
10.
Mosleh
,
A. O.
,
Mikhaylovskaya
,
A. V.
,
Kotov
,
A. D.
, and
Kwame
,
J. S.
,
2019
, “
Experimental, Modelling and Simulation of an Approach for Optimizing the Superplastic Forming of Ti-6%Al-4%V Titanium Alloy
,”
J. Manuf. Processes
,
45
, pp.
262
272
.
11.
Roy
,
S.
, and
Suwas
,
S.
,
2013
, “
Deformation Mechanisms During Superplastic Testing of Ti-6Al-4V-0.1B Alloy
,”
Mater. Sci. Eng. A
,
574
, pp.
205
217
.
12.
Asghari-Rad
,
P.
,
Nguyen
,
N. T. C.
,
Zargaran
,
A.
,
Sathiyamoorthi
,
P.
, and
Kim
,
H. S.
,
2022
, “
Deformation-Induced Grain Boundary Segregation Mediated High-Strain Rate Superplasticity in Medium Entropy Alloy
,”
Scr. Mater.
,
207
, p.
114239
.
13.
Rezaei
,
A.
,
Mahmudi
,
R.
,
Cayron
,
C.
, and
Loge
,
R.
,
2021
, “
Microstructural Evolution and Superplastic Behavior of a Fine-Grained Mg−Gd−Y−Ag Alloy Processed by Simple Shear Extrusion
,”
Mater. Sci. Eng. A
,
806
, p.
140803
.
14.
Alabort
,
E.
,
Kontis
,
P.
,
Barba
,
D.
,
Dragnevski
,
K.
, and
Reed
,
R. C.
,
2016
, “
On the Mechanisms of Superplasticity in Ti-6Al-4V
,”
Acta Mater.
,
105
, pp.
449
463
.
15.
Fan
,
X. G.
,
Jiang
,
X. Q.
,
Zeng
,
X.
,
Shi
,
Y. G.
,
Gao
,
P. F.
, and
Zhan
,
M.
,
2018
, “
Modeling the Anisotropy of Hot Plastic Deformation of Two-Phase Titanium Alloys With a Colony Microstructure
,”
Int. J. Plast.
,
104
, pp.
173
195
.
16.
Kapoor
,
K.
,
Yoo
,
Y. S. J.
,
Book
,
T. A.
,
Kacher
,
J. P.
, and
Sangid
,
M. D.
,
2018
, “
Incorporating Grain-Level Residual Stresses and Validating a Crystal Plasticity Model of a Two-Phase Ti-6Al-4 V Alloy Produced Via Additive Manufacturing
,”
J. Mech. Phys. Solids
,
121
, pp.
447
462
.
17.
Zhao
,
J.
,
Zaiser
,
M.
,
Lu
,
X.
,
Zhang
,
B.
,
Huang
,
C.
,
Kang
,
G.
, and
Zhang
,
X.
,
2021
, “
Size-Dependent Plasticity of Hetero-Structured Laminates: A Constitutive Model Considering Deformation Heterogeneities
,”
Int. J. Plast.
,
145
, p.
103063
.
18.
Zhu
,
L.
,
Ruan
,
H.
,
Sun
,
L.
,
Guo
,
X.
, and
Lu
,
J.
,
2021
, “
Constitutive Modeling of Size-Dependent Deformation Behavior in Nano-Dual-Phase Glass-Crystal Alloys
,”
Int. J. Plast.
,
137
, p.
102918
.
19.
Fan
,
X. G.
, and
Yang
,
H.
,
2011
, “
Internal-State-Variable Based Self-Consistent Constitutive Modeling for Hot Working of Two-Phase Titanium Alloys Coupling Microstructure Evolution
,”
Int. J. Plast.
,
27
(
11
), pp.
1833
1852
.
20.
Ashby
,
M. F.
, and
Verrall
,
R. A.
,
1973
, “
Diffusion-Accommodated Flow and Superplasticity
,”
Acta Metall.
,
21
(
2
), pp.
149
163
.
21.
Spingarn
,
J. R.
, and
Nix
,
W. D.
,
1978
, “
Diffusional Creep and Diffusionally Accommodated Grain Rearrangement
,”
Acta Metall.
,
26
(
9
), pp.
1389
1398
.
22.
Naziri
,
H.
,
Pearce
,
R.
,
Brown
,
M. H.
, and
Hale
,
K. F.
,
1973
, “
In Situ Superplasticity Experiments in the 1 Million Volt Electron Microscope
,”
J. Microsc.
,
97
(
1–2
), pp.
229
238
.
23.
Stowell
,
M. J.
,
Robertson
,
J. L.
, and
Watts
,
B. M.
,
1969
, “
Structural Changes During Superplastic Deformation of the Al–Cu Eutectic Alloy
,”
Metal Sci. J.
,
3
(
1
), pp.
41
45
.
24.
Bhattacharya
,
A.
,
Shen
,
Y.-F.
,
Hefferan
,
C. M.
,
Li
,
S. F.
,
Lind
,
J.
,
Suter
,
R. M.
,
Krill
,
C. E.
, III
, and
Rohrer
,
G. S.
,
2021
, “
Grain Boundary Velocity and Curvature Are Not Correlated in Ni Polycrystals
,”
Science
,
374
(
6564
), pp.
189
193
.
25.
Valiev
,
R. Z.
, and
Langdon
,
T. G.
,
1993
, “
An Investigation of the Role of Intragranular Dislocation Strain in the Superplastic Pb-62% Sn Eutectic Alloy
,”
Acta Metall. Mater.
,
41
(
3
), pp.
949
954
.
26.
Weinstein
,
A. M.
,
Ferraglio
,
P.
, and
Mukherjee
,
K.
,
1971
, “
Dynamic Strain Aging of Carbon Doped Ni
,”
Mater. Sci. Eng.
,
8
(
4
), pp.
198
202
.
27.
Ovid’Ko
,
I. A.
, and
Sheinerman
,
A. G.
,
2017
, “
Grain Boundary Sliding, Triple Junction Disclinations and Strain Hardening in Ultrafine-Grained and Nanocrystalline Metals
,”
Int. J. Plast.
,
96
, pp.
227
241
.
28.
Rachinger
,
W. A.
,
1952
, “
Relative Grain Translations in the Plastic Flow of Aluminium
,”
J. Inst. Met.
,
81
, pp.
33
41
.
29.
Lifshitz
,
I. M.
,
1963
, “
On the Theory of Diffusion-Viscous Flow of Polycrystalline Bodies
,”
Sov. Phys. JETP
,
17
, pp.
909
920
.
30.
Xun
,
Y.
, and
Mohamed
,
F. A.
,
2004
, “
Superplastic Behavior of Zn-22%Al Containing Nano-Scale Dispersion Particles
,”
Acta Mater.
,
52
(
15
), pp.
4401
4412
.
31.
Oliveros
,
D.
,
Fraczkiewicz
,
A.
,
Dlouhy
,
A.
,
Zhang
,
C.
,
Song
,
H.
,
Sandfeld
,
S.
, and
Legros
,
M.
,
2021
, “
Orientation-Related Twinning and Dislocation Glide in a Cantor High Entropy Alloy at Room and Cryogenic Temperature Studied by In Situ TEM Straining
,”
Mater. Chem. Phys.
,
272
, p.
124955
.
32.
Bawane
,
K.
,
Liu
,
X.
,
Yao
,
T.
,
Khafizov
,
M.
,
French
,
A.
,
Mann
,
J. M.
,
Shao
,
L.
,
Gan
,
J.
,
Hurley
,
D. H.
, and
He
,
L.
,
2021
, “
TEM Characterization of Dislocation Loops in Proton Irradiated Single Crystal ThO2
,”
J. Nucl. Mater.
,
552
, p.
152998
.
33.
Sotoudeh
,
K.
, and
Bate
,
P. S.
,
2010
, “
Diffusion Creep and Superplasticity in Aluminium Alloys
,”
Acta Mater.
,
58
(
6
), pp.
1909
1920
.
34.
Rust
,
M. A.
, and
Todd
,
R. I.
,
2011
, “
Surface Studies of Region II Superplasticity of AA5083 in Shear: Confirmation of Diffusion Creep, Grain Neighbour Switching and Absence of Dislocation Activity
,”
Acta Mater.
,
59
(
13
), pp.
5159
5170
.
35.
Masuda
,
H.
,
Kanazawa
,
T.
,
Tobe
,
H.
, and
Sato
,
E.
,
2018
, “
Dynamic Anisotropic Grain Growth During Superplasticity in Al–Mg–Mn Alloy
,”
Scr. Mater.
,
149
, pp.
84
87
.
36.
Masuda
,
H.
,
Tobe
,
H.
,
Sato
,
E.
,
Sugino
,
Y.
, and
Ukai
,
S.
,
2019
, “
Diffusional Mass Flux Accommodating Two-Dimensional Grain Boundary Sliding in ODS Ferritic Steel
,”
Acta Mater.
,
176
, pp.
63
72
.
37.
Masuda
,
H.
, and
Sato
,
E.
,
2020
, “
Diffusional and Dislocation Accommodation Mechanisms in Superplastic Materials
,”
Acta Mater.
,
197
, pp.
235
252
.
38.
Yasmeen
,
T.
,
Zhao
,
B.
,
Zheng
,
J. H.
,
Tian
,
F.
,
Lin
,
J.
, and
Jiang
,
J.
,
2020
, “
The Study of Flow Behavior and Governing Mechanisms of a Titanium Alloy During Superplastic Forming
,”
Mater. Sci. Eng. A
,
788
, p.
139482
.
39.
Sakai
,
T.
, and
Fine
,
M. E.
,
1974
, “
Failure of Schmid’s Law in TiAl Alloys for Prismatic Slip
,”
Scr. Metall.
,
8
(
5
), pp.
541
544
.
40.
Akhtar
,
A.
,
1973
, “
Compression of Zirconium Single Crystals Parallel to the C-Axis
,”
J. Nucl. Mater.
,
47
(
1
), pp.
79
86
.
41.
Akhtar
,
A.
,
1975
, “
Schmid’s Law and Prismatic Slip of Zirconium
,”
Scr. Metall.
,
9
(
8
), pp.
859
861
.
42.
Koike
,
J.
, and
Ohyama
,
R.
,
2005
, “
Geometrical Criterion for the Activation of Prismatic Slip in AZ61 Mg Alloy Sheets Deformed at Room Temperature
,”
Acta Mater.
,
53
(
7
), pp.
1963
1972
.
43.
Chun
,
Y. B.
,
Battaini
,
M.
,
Davies
,
C. H. J.
, and
Hwang
,
S. K.
,
2010
, “
Distribution Characteristics of In-Grain Misorientation Axes in Cold-Rolled Commercially Pure Titanium and Their Correlation With Active Slip Modes
,”
Metall. Mater. Trans. A
,
41
(
13
), pp.
3473
3487
.
44.
Chun
,
Y. B.
, and
Davies
,
C. H. J.
,
2011
, “
Investigation of Prism <a> Slip in Warm-Rolled AZ31 Alloy
,”
Metall. Mater. Trans. A
,
42
(
13
), pp.
4113
4125
.
45.
Yamasaki
,
M.
,
Hagihara
,
K.
,
Inoue
,
S. I.
,
Hadorn
,
J. P.
, and
Kawamura
,
Y.
,
2013
, “
Crystallographic Classification of Kink Bands in an Extruded Mg-Zn-Y Alloy Using Intragranular Misorientation Axis Analysis
,”
Acta Mater.
,
61
(
6
), pp.
2065
2076
.
46.
Qiang
,
F.
,
Bouzy
,
E.
,
Kou
,
H.
,
Zhang
,
Y.
,
Wang
,
L.
, and
Li
,
J.
,
2021
, “
Grain Fragmentation Associated Continuous Dynamic Recrystallization (CDRX) of Hexagonal Structure During Uniaxial Isothermal Compression: High-Temperature α Phase in TiAl Alloys
,”
Intermetallics
,
129
, p.
107028
.
47.
Bache
,
M. R.
,
Evans
,
W. J.
,
Randle
,
V.
, and
Wilson
,
R. J.
,
1998
, “
Characterization of Mechanical Anisotropy in Titanium Alloys
,”
Mater. Sci. Eng. A
,
257
(
1
), pp.
139
144
.
48.
Dunne
,
F. P. E.
,
Walker
,
A.
, and
Rugg
,
D.
,
2007
, “
A Systematic Study of Hcp Crystal Orientation and Morphology Effects in Polycrystal Deformation and Fatigue
,”
Proc. R. Soc. A
,
463
(
2082
), pp.
1467
1489
.
49.
Sun
,
J.
,
Jin
,
L.
,
Dong
,
J.
,
Wang
,
F.
,
Dong
,
S.
,
Ding
,
W.
, and
Luo
,
A. A.
,
2019
, “
Towards High Ductility in Magnesium Alloys—The Role of Intergranular Deformation
,”
Int. J. Plast.
,
123
, pp.
121
132
.
50.
Kawano
,
Y.
,
Sato
,
M.
,
Mayama
,
T.
,
Mitsuhara
,
M.
, and
Yamasaki
,
S.
,
2020
, “
Quantitative Evaluation of Slip Activity in Polycrystalline α-Titanium Considering Non-Local Interactions Between Crystal Grains
,”
Int. J. Plast.
,
127
, p.
102638
.
51.
Cizek
,
P.
,
Kada
,
S. R.
,
Wang
,
J.
,
Armstrong
,
N.
,
Antoniou
,
R. A.
, and
Lynch
,
P. A.
,
2020
, “
Dislocation Structures Representing Individual Slip Systems Within the α Phase of a Ti–6Al–4 V Alloy Deformed in Tension
,”
Mater. Sci. Eng. A
,
797
, p.
140225
.
52.
Li
,
N.
,
Zhao
,
Z. B.
,
Zhu
,
S. X.
,
Zhou
,
T. Y.
,
Wang
,
Q. J.
,
Sun
,
H.
, and
Liu
,
Y. H.
,
2021
, “
Analysis of the Active Slip Mode During Compression of the Near-α Titanium Alloy in the α + β Phase-Field: Insights From the Results of Electron Backscattered Diffraction
,”
Mater. Lett.
,
288
, p.
129363
.
53.
Anne
,
B. R.
,
Okuyama
,
Y.
,
Morikawa
,
T.
, and
Tanaka
,
M.
,
2020
, “
Activated Slip Systems in Bimodal Ti–6Al–4 V Plastically Deformed at Low and Moderately High Temperatures
,”
Mater. Sci. Eng. A
,
798
, p.
140211
.
54.
Poorsolhjouy
,
P.
, and
Misra
,
A.
,
2019
, “
Granular Micromechanics Based Continuum Model for Grain Rotations and Grain Rotation Waves
,”
J. Mech. Phys. Solids
,
129
, pp.
244
260
.
55.
Gupta
,
M. K.
,
Singla
,
A. K.
,
Ji
,
H.
,
Song
,
Q.
,
Liu
,
Z.
,
Cai
,
W.
,
Mia
,
M.
,
Khanna
,
N.
, and
Krolczyk
,
G. M.
,
2020
, “
Impact of Layer Rotation on Micro-Structure, Grain Size, Surface Integrity and Mechanical Behaviour of SLM Al-Si-10Mg Alloy
,”
J. Mater. Res. Technol.
,
9
(
5
), pp.
9506
9522
.
56.
Yamanaka
,
A.
,
McReynolds
,
K.
, and
Voorhees
,
P. W.
,
2017
, “
Phase Field Crystal Simulation of Grain Boundary Motion, Grain Rotation and Dislocation Reactions in a BCC Bicrystal
,”
Acta Mater.
,
133
, pp.
160
171
.
57.
Guo
,
Y.
,
Wang
,
J.
,
Wang
,
Z.
,
Tang
,
S.
, and
Zhou
,
Y.
,
2014
, “
Phase Field Crystal Modeling of Grain Rotation With Small Initial Misorientations in Nanocrystalline Materials
,”
Comput. Mater. Sci.
,
88
, pp.
163
169
.
58.
Raabe
,
D.
,
1994
, “
Modelling of Grain Rotations During Compression Deformation of Polycrystalline Intermetallic L12 Compounds
,”
Mater. Sci. Eng. A
,
A186
(
1–2
), pp.
L1
L3
.
59.
Yang
,
J.
,
Wu
,
J.
,
Yang
,
D.
,
Wang
,
Q.
,
Wang
,
K.
,
Zhang
,
Z.
,
Wang
,
M.
, and
Muzamil
,
M.
,
2020
, “
A Modified Constitutive Model With Grain Rotation for Superplastic Forming of Ti-6Al-4V Alloy
,”
ASME J. Eng. Mater. Technol.
,
142
(
2
), p.
021006
.
60.
Li
,
Y. J.
,
Hsu
,
C. W.
,
Ting
,
Y. H.
,
Tsou
,
N. T.
,
Lo
,
Y. C.
,
Wu
,
W. W.
,
Tu
,
K. N.
, and
Chen
,
C.
,
2020
, “
Deformation Induced Columnar Grain Rotation in Nanotwinned Metals
,”
Mater. Sci. Eng. A
,
797
, p.
140045
.
61.
Borodin
,
E. N.
,
Mayer
,
A. E.
, and
Gutkin
,
M. Y.
,
2020
, “
Coupled Model for Grain Rotation, Dislocation Plasticity and Grain Boundary Sliding in Fine-Grained Solids
,”
Int. J. Plast.
,
134
, p.
102776
.
62.
Mikula
,
J.
,
Joshi
,
S. P.
,
Tay
,
T. E.
,
Ahluwalia
,
R.
, and
Quek
,
S. S.
,
2019
, “
A Phase Field Model of Grain Boundary Migration and Grain Rotation Under Elasto–Plastic Anisotropies
,”
Int. J. Solids Struct.
,
178–179
, pp.
1
18
.
63.
Yang
,
J.
,
Wu
,
J.
,
Zhang
,
Q.
,
Han
,
R.
, and
Wang
,
K.
,
2020
, “
Investigation of Flow Behavior and Microstructure of Ti–6Al–4V With Annealing Treatment During Superplastic Forming
,”
Mater. Sci. Eng. A
,
797
, p.
140046
.
64.
Zhang
,
W.
,
Liu
,
H.
,
Ding
,
H.
, and
Fujii
,
H.
,
2020
, “
Superplastic Deformation Mechanism of the Friction Stir Processed Fully Lamellar Ti-6Al-4V Alloy
,”
Mater. Sci. Eng. A
,
785
, p.
139390
.
65.
Ball
,
A.
,
1997
, “
Superplasticity in the Aluminium-Zinc Eutectoid—An Early Model Revisited
,”
Mater. Sci. Eng. A
,
234–236
, pp.
365
369
.
66.
Pantleon
,
W.
,
2008
, “
Resolving the Geometrically Necessary Dislocation Content by Conventional Electron Backscattering Diffraction
,”
Scr. Mater.
,
58
(
11
), pp.
994
997
.
67.
Williams
,
J. C.
,
Baggerly
,
R. G.
, and
Paton
,
N. E.
,
2002
, “
Deformation Behavior of HCP Ti-Al Alloy Single Crystals
,”
Metall. Mater. Trans. A
,
33
(
13
), pp.
837
850
.
68.
Sakai
,
T.
, and
Fine
,
M. E.
,
1974
, “
Basal Slip of TiAl Single Crystals
,”
Scr. Metall.
,
8
(
5
), pp.
545
547
.
69.
Conrad
,
H.
,
de Meester
,
B.
,
Doner
,
M.
, and
Okazaki
,
K.
,
1975
,
Strengthening of Alpha Titanium by the Interstitial Solutes C, N, and O
,
Springer
,
Boston, MA
, pp.
1
45
.
70.
Doner
,
M.
, and
Conrad
,
H.
,
1973
, “
Deformation Mechanisms in Commercial Ti (0.5 at. Pct Oineq) at Intermediate and High Temperatures (0.3–0.6 Tinm)
,”
Metall. Trans.
,
4
(
12
), pp.
2809
2817
.
71.
Marin
,
E. B.
, and
Dawson
,
P. R.
,
1998
, “
On Modelling the Elasto-Viscoplastic Response of Metals Using Polycrystal Plasticity
,”
Comput. Meth. Appl. Mech. Eng.
,
165
(
1–4
), pp.
1
21
.
72.
Marin
,
E. B.
,
Dawson
,
P. R.
, and
Jenkins
,
J. T.
,
1995
, “
Aggregate Size Effect on the Predicted Plastic Response of Hexagonal Close-Packed Polycrystals
,”
Modell. Simul. Mater. Sci. Eng.
,
3
(
6
), pp.
845
864
.
73.
Groh
,
S.
,
Marin
,
E. B.
,
Horstemeyer
,
M. F.
, and
Zbib
,
H. M.
,
2009
, “
Multiscale Modeling of the Plasticity in an Aluminum Single Crystal
,”
Int. J. Plast.
,
25
(
8
), pp.
1456
1473
.
You do not currently have access to this content.