Adaptive design refers to experimental design where the next sample point is determined by information from previous experiments. This article presents a constrained optimization algorithm known as superEGO (a variant of the EGO algorithm of Schonlau, Welch, and Jones) that can create adaptive designs using kriging approximations. Our primary goal is to illustrate that superEGO is well-suited to generating adaptive designs which have many advantages over competing methods. The approach is demonstrated on a novel human-reach experiment where the selection of sampling points adapts to the individual test subject. Results indicate that superEGO is effective at satisfying the experimental objectives.

1.
Montgomery
,
D. C.
, 2001,
Design and Analysis of Experiments
, 5th ed.,
Wiley
, New York.
2.
Atkinson
,
A.
,
Hackl
,
P.
, and
Müller
,
W.
, 2001, in
Proceedings of MODA 6: Model Oriented Data Analysis
, Physica Verlag, Heidelberg, Germany.
3.
Atkinson
,
A.
,
Pronzato
,
L.
, and
Wynn
,
H. P.
, 1998, in
Proceedings of MODA 5: Advances in Model-oriented Data Analysis and Experimental Design
, Physica Verlag, Heidelberg, Germany.
4.
Flournoy
,
N.
,
Rosenberger
,
W. F.
, and
Wong
,
W. K.
, 1997,
New Developments and Applications in Experimental Design: Selected Proceedings of a 1997 Joint AMS-IMS-SIAM Summer Research Conference
,
Institute of Mathematical Statistics
,
Hayward
, CA.
5.
Thompson
,
S. K.
, and
Seber
,
G. A. F.
, 1996,
Adaptive Sampling
,
Wiley
, New York.
6.
Zacks
,
S.
, 1996, “
Adaptive Designs for Parametric Models
,”
Handbook of Statistics
, Vol.
13
,
Ghosh
,
S.
and
Rao
,
C. R.
, eds., NY, Chap. 5.
7.
Hardwick
,
J. P.
, and
Stout
,
Q. F.
, 1998, “
Flexible Algorithms for Creating and Analyzing Adaptive Sampling Procedures
,”
New Developments and Applications in Experimental Design: Selected Proceedings of a 1997 Joint AMS-IMS-SIAM Summer Conference
,
Flourny
,
N.
,
Rosenberger
,
W. F.
, and
Wong
,
W. K.
, eds.,
Institute of Mathematical Statistics
,
Hayward
, CA, pp.
91
105
.
8.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2003, “
An Efficient Algorithm for Constructing Optimal Design of Computer Experiments
,”
ASME Des. Automation Conf.
, ASME Paper No. DETC-DAC48760.
9.
Jin
,
R.
,
Chen
,
W.
, and
Sudjianto
,
A.
, 2002, “
On Sequential Sampling for Global Metamodeling in Engineering Design
,”
ASME Des. Automation Conf.
, ASME Paper No. DETC-DAC34092.
10.
Jones
,
D. R.
, 2001, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Global Optim.
0925-5001,
21
, pp.
345
383
.
11.
Pacheco
,
J. E.
,
Amon
,
C. H.
, and
Finger
,
S.
, 2003, “
Bayesian Surrogates Applied to Conceptual Stages of the Engineering Design Process
,”
J. Mech. Des.
1050-0472,
125
(
4
), pp.
664
672
.
12.
Prez
,
V. M.
,
Renaud
,
J. E.
, and
Watson
,
L. T.
, 2001, “
Adaptive Experimental Design for Construction of Response Surface Approximations
,”
AIAA J.
0001-1452,
40
(
12
), pp.
2495
2503
.
13.
Sasena
,
M. J.
, 2002, “
Flexibility and Efficiency Enhancements for Constrained Global Design Optimization with Kriging Approximations
,” Ph.D. thesis, University of Michigan.
14.
Simpson
,
T.
,
Dennis
,
L.
, and
Chen
,
W.
, 2002, “
Sampling Strategies for Computer Experiments: Design and Analysis
,”
Int. J. Reliab. Appl.
1598-0073,
2
(
3
), pp.
209
240
.
15.
Torczon
,
V.
, and
Trosset
,
M. W.
, 1998, “
Using Approximation to Accelerate Engineering Design Optimization
,” in
Proceedings of the 7th AAIA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Paper AIAA-98-4800.
16.
Sasena
,
M. J.
,
Papalambros
,
P. Y.
, and
Goovaerts
,
P.
, 2002, “
Exploration of Metamodeling Sampling Criteria for Constrained Global Optimization
,”
Eng. Optimiz.
0305-215X,
34
(
3
), pp.
263
278
.
17.
Sasena
,
M. J.
,
Papalambros
,
P. Y.
, and
Goovaerts
,
P.
, 2001, “
The Use of Surrogate Modeling Algorithms to Exploit Disparities in Function Computation Time Within Simulation-based Optimization
,”
The Fourth World Congress of Structural and Multidisciplinary Optimization
, Dalian, China.
18.
Schonlau
,
M.
, 1997, “
Computer Experiments and Global Optimization
,” Ph.D. thesis, University of Waterloo, Waterloo, Canada.
19.
Goovaerts
,
P.
, 1997,
Geostatistics for Natural Resources Evaluation
,
Oxford University Press
, New York.
20.
Jones
,
D. R.
,
Perttunen
,
C. D.
, and
Stuckman
,
B. E.
, 1993, “
Lipschitzian Optimization Without the Lipschitz Constant
,”
J. Optim. Theory Appl.
0022-3239,
79
(
1
), pp.
157
181
.
21.
Jones
,
D. R.
, 2001, “
The DIRECT Global Optimization Algorithm
,”
Encyclopedia of Optimization
, Vol.
1
,
Floudas
,
C. A.
and
Pardalos
,
P. M.
, eds., pp.
431
440
.
22.
Sacks
,
J.
,
Schiller
,
S. B.
, and
Welch
,
W. J.
, 1989, “
Design for Computer Experiments
,”
Technometrics
0040-1706,
31
, pp.
41
47
.
23.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
W. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
24.
Sasena
,
M. J.
,
Parkinson
,
M.
,
Reed
,
M.
,
Papalambros
,
P. Y.
, and
Goovaerts
,
P.
, 2002, “
Adaptive Experimental Design Applied to an Ergonomics Testing Procedure
,”
ASME DETC Conf.
, ASME Paper No. DETC2002/DAC-34091.
You do not currently have access to this content.