This paper is concerned with robust aerodynamic design of compressor blades against erosion. The proposed approach combines a multiobjective genetic algorithm with geometry modeling methods, high-fidelity computational fluid dynamics, and surrogate models to arrive at robust designs on a limited computational budget. The multiobjective formulation used here allows explicit trade-off between the mean and variance of the performance to be carried out. Detailed numerical studies are presented for robust geometric design of a typical compressor fan blade section to illustrate the proposed methodology. The performance of a selected robust optimal solution on the Pareto front is compared to a deterministic optimal solution to demonstrate that significant improvements in the mean shift and variance can be achieved.

1.
Metwally
,
M.
,
Tabakoff
,
W.
, and
Hamed
,
A.
, 1995, “
Blade Erosion in Automotive Gas Turbine Engine
,”
J. Eng. Gas Turbines Power
0742-4795,
117
, pp.
213
219
.
2.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Sing
,
D.
, 1998, “
Modeling of Compressor Performance Deterioration Due to Erosion
,”
Int. J. Rotating Mach.
1023-621X,
4
, pp.
243
248
.
3.
Roberts
,
W. B.
, 1984, “
Axial Compressor Performance Restoration by Blade Profile Control
,” AIAA-84-GT-232, ASME.
4.
Kumar
,
A.
,
Nair
,
P. B.
,
Keane
,
A. J.
, and
Shahpar
,
S.
, 2005, “
Probabilistic Performance Analysis of Eroded Compressor Fan Blades
,” ASME Power PWR2005-50070.
5.
Zang
,
T. A.
,
Hemsch
,
M. J.
,
Hilburger
,
M. W.
,
Kenny
,
S. P.
,
Luckring
,
J. M.
,
Maghami
,
P.
,
Padula
,
S. L.
, and
Stroud
,
W. F.
, 2002, “
Needs and Opportunities for Uncertainty-Based Multidisciplinary Design Methods for Aerospace Vehicles
,” Technical Report NASA/TM-2002-211462,
NASA Langley Research Center
, Hampton, VA.
6.
Phadke
,
M. S.
, 1989,
Quality Engineering using Robust Design
,
Prentice Hall
,
Englewood Cliffs, NJ
.
7.
Taguchi
,
G.
, and
Wu
,
Y.
, 1980,
Introduction to Off-Line Quality Control
,
Central Japan Quality Control Association
,
Nagoya, Japan
.
8.
Taguchi
,
G.
, 1986,
Introduction to Quality Engineering
,
UNIPUB/Krauss International
,
New York
.
9.
Nair
,
V. N.
, 1992, “
Taguchi’s Parameter Design: A Panel Discussion
,”
Technometrics
0040-1706,
34
, pp.
127
161
.
10.
Trosset
,
M. W.
, 1996, “
Taguchi and Robust Design
,” Technical Report No. 96–31, Houston, TX.
11.
Box
,
G. E. P.
, 1988, “
Signal-to-Noise Ratios, Performance Criteria, and Transformations (with discussions)
,”
Technometrics
0040-1706,
30
(
1
), pp.
1
17
.
12.
Trosset
,
M. W.
,
Alexandrov
,
N. M.
, and
Watson
,
L. T.
, 2003, “
New Methods for Robust Design Using Computer Simulations
,”
American Statistical Association, 2003, Proceedings of the Section on Physical and Engineering Science
.
13.
Welch
,
W. J.
,
Yu
,
T. K.
,
Kang
,
S. M.
, and
Sacks
,
J.
, 1990, “
Computer Experiments for Quality Control
,”
J. Quality Technol.
0022-4065,
22
, pp.
15
22
.
14.
Welch
,
W. J.
, and
Sacks
,
J.
, 1991, “
A System for Quality Improvement via Computer Experiments
,”
Commun. Stat: Theory Meth.
0361-0926,
20
, pp.
477
495
.
15.
Ben-Tal
,
A.
, and
Nemirovski
,
A.
, 1997, “
Robust Truss Topology Design via Semidefinite Programming
,”
SIAM J. Optim.
1052-6234,
7
, pp.
991
1016
.
16.
Gunawan
,
S.
, and
Azarm
,
S.
, 2004, “
Non-gradient Based Parameter Sensitivity Estimation of Single Objective Robust Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
126
, pp.
395
402
.
17.
Huyse
,
L.
, and
Lewis
,
R.
, 2001, “
Aerodynamic Shape Optimization of Two-Dimensional Airfoils Under Uncertain Operating Conditions
,” Technical Report NASA/CR-2001-210648,
Langley Research Center
, Hampton, VA.
18.
Li
,
W.
,
Huyse
,
L.
, and
Padula
,
S.
, 2002, “
Robust Airfoil Optimization to Achieve Drag Reduction Over a Range of Mach Numbers
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
38
50
.
19.
Tsutsui
,
S.
, and
Ghosh
,
A.
, 1997, “
Genetic Algorithms with a Robust Solution Searching Scheme
,”
IEEE Trans. Evol. Comput.
1089-778X,
1
, pp.
201
208
.
20.
Tsutsui
,
S.
,
Ghosh
,
A.
, and
Fujimoto
,
Y.
, 1996, “
A Robust Solution Searching Scheme in Genetic Search
,” in
Proceedings of Parallel Problem Solving in Nature
, pp.
543
552
.
21.
Huyse
,
L.
, 2001, “
Solving Problems of Optimization Under Uncertainty as Statistical Decision Problem
,”
AIAA Pap.
0146-3705,
2001
1519
.
22.
Parkinson
,
D. B.
, 1997, “
Robust Design by Variability Optimization
,”
Qual. Reliab. Eng. Int
0748-8017,
13
, pp.
97
102
.
23.
Al-Widyan
,
K.
, and
Angeles
,
J.
, 2005, “
A Model-Based Formulation of Robust Design
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
388
396
.
24.
Jin
,
Y.
, and
Branke
,
J.
, 2005, “
Evolutionary Optimization in Uncertain Environments: A Survey
,”
IEEE Trans. Evol. Comput.
1089-778X,
9
(
3
), pp.
303
317
.
25.
Garzon
,
V. E.
, 2003, “
Probabilistic Aerothermal Design of Compressor Airfoils
,” Ph.D. thesis, Massachusetts Institute of Technology.
26.
Das
,
I.
, 2000, “
Robustness Optimization for Constrained Nonlinear Programming Problems
,”
Eng. Optimiz.
0305-215X,
32
(
5
), pp.
585
618
.
27.
Jin
,
Y.
, and
Branke
,
J.
, 2003, “
Tradeoff Between Performance and Robustness: An Evolutionary Multiobjective Approach
,”
Evolutionary Multi-Criterion Optimization
,
Springer
,
Berlin
, LNCS 2632.
28.
Chen
,
W.
,
Allen
,
J. K.
,
Tsui
,
K.-L.
, and
Mistree
,
F.
, 1996, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
1050-0472,
118
, pp.
478
485
.
29.
Scott
,
M. J.
, and
Antonsson
,
E. K.
, 2005, “
Compensation and Weights for Trade-Offs in Engineering Design: Beyond the Weighted Sum
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
1045
1055
.
30.
Das
,
I.
, and
Dennis
,
J. E.
, 1997, “
A Closer Look at Drawbacks of Minimizing Weighted Sum of Objectives for Pareto Set Generation in Multicriteria Optimization Problems
,”
Struct. Optim.
0934-4373,
14
, pp.
63
69
.
31.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
, 1998, “
Quality Utility: A Compromise Programming Approach to Robust Design
,” ASME DETC98/DAC5601.
32.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
, 1993, “
Genetic Algorithm for Multi-Objective Optimization: Formulation, Discussion and Generalization
,”
Proceedings of the Fifth International Conference on Genetic Algorithms
,
S.
Forrest
, ed.,
San Mateo, CA
.
33.
Horn
,
J.
,
Nafploitis
,
N.
, and
Goldberg
,
D. E.
, 1994, “
A Niched Pareto Genetic Algorithm for Multi-Objective Optimization
,”
Proceedings of the First IEEE Conference on Evolutionary Computation
,
Z.
Michalewicz
, ed.,
Piscataway, NJ
.
34.
Zitler
,
E.
, and
Thiele
,
L.
, 1999, “
Multiobjective Evolutionary Algorithms: A Comparitive Case Study and the Strength Pareto Approach
,”
IEEE Trans. Evol. Comput.
1089-778X,
3
, pp.
257
271
.
35.
Fieldsend
,
J. E.
,
Everson
,
R. M.
, and
Singh
,
S.
, 2003, “
Using Unconstrained Elite Archives for Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
1089-778X,
7
, pp.
305
323
.
36.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
, pp.
182
197
.
37.
Hicks
,
R. M.
, and
Henne
,
P. A.
, 1998, “
Wing Design by Numerical Optimisation
,”
J. Aircr.
0021-8669,
15
(
7
), pp.
407
412
.
38.
Wu
,
H. Y.
,
Yang
,
S.
, and
Liu
,
F.
, 2003, “
Comparison of Three Geometric Representation of Airfoils for Aerodynamic Optimization
,”
AIAA Pap.
0146-3705,
2003
4095
.
39.
Shahpar
,
S.
, and
Lapworth
,
L.
, 2003, “
Parametric Design and Rapid Meshing Systems for Turbomachinery Optimisation
,” ASME-GT2003-38698.
40.
Moinier
,
P.
, 1999, “
Algorithm Developments for an Unstructured Viscous Flow Solver
,” Ph.D. thesis, Oxford University, Oxford.
41.
Moinier
,
P.
,
Muller
,
J. D.
, and
Giles
,
M. B.
, 1999, “
Edge-Based Multigrid and Preconditioning for Hybrid Grids
,”
AIAA Pap.
0146-3705,
99
3339
.
42.
Keane
,
A. J.
, and
Nair
,
P. B.
, 2005,
Computational Approaches for Aerospace Design
,
Wiley
,
New York
.
43.
Matheron
,
G.
, 1963, “
Principles of Geostatistics
,”
Econ. Geol.
0361-0128,
58
, pp.
1246
1266
.
44.
Neal
,
R. M.
, 1996,
Bayesian Learning for Neural Networks
,
Springer
,
New York
.
45.
MacKay
,
D. J. C.
, 1997, “
Gaussian Processes-A Replacement for Supervised Neural Networks
,” Tutorial lecture Notes for NIPS, at http://www.inference.phy.cam.ac.uk/mackay/abstracts/gp.htmlhttp://www.inference.phy.cam.ac.uk/mackay/abstracts/gp.html, 1997.
46.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
, 1998, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Global Optim.
0925-5001,
13
(
4
), pp.
455
492
.
47.
Nair
,
P. B.
,
Choudhary
,
A.
, and
Keane
,
A. J.
, 2001, “
A Bayesian Framework for Uncertainty Analysis Using Deterministic Black-Box Simulation Code
,”
AIAA Pap.
0146-3705,
2001
1676
.
48.
Keane
,
A. J.
, 2003, “
Wing Optimization Using Design of Experiment, Response Surface, and Data Fusion Methods
,”
J. Aircr.
0021-8669,
40
, pp.
741
750
.
49.
Sacks
,
J.
,
Welch
,
W. J.
,
Mitchell
,
T. J.
, and
Wynn
,
H. P.
, 1989, “
Design and Analysis of Computer Experiments
,”
Stat. Sci.
0883-4237,
4
(
4
), pp.
409
435
.
50.
Schonlau
,
M.
, 1997, “
Computer Experiments and Global Optimization
,” Ph.D. thesis, University of Waterloo.
51.
Chen
,
W.
,
Jin
,
R.
, and
Sudjianto
,
A.
, 2005, “
Analytical Variance-Based Global Sensitivity Analysis in Simulation-Based Design Under Uncertainty
,”
ASME J. Mech. Des.
1050-0472,
127
, pp.
875
884
.
52.
Sobol
,
I. M.
, 1994,
A Primer for the Monte Carlo Method
,
CRC Press
,
Boca Raton
.
53.
Athan
,
T. W.
, and
Papalambros
,
P. Y.
, 1996, “
A Note on Weighted Criteria Methods for Compromise Solutions in Multi-Objective Optimization
,”
Eng. Optimiz.
0305-215X,
27
(
2
), pp.
155
176
.
54.
Koski
,
J.
, 1985, “
Defectiveness of Weighting Method in Multicriterion Optimization of Structures
,”
Commun. Appl. Numer. Methods
0748-8025,
1
, pp.
333
337
.
55.
Deb
,
K.
, 1999, “
Multi-Objective Genetic Algorithms: Problem Difficulties and Construction of Test Functions
,”
Evol. Comput.
1063-6560,
7
, pp.
205
230
.
You do not currently have access to this content.