Since variances in the input variables of the engineering system cause subsequent variances in the product output performance, reliability-based design optimization (RBDO) is getting much attention recently. However, RBDO requires expensive computational time. Therefore, the response surface method is often used for computational efficiency in solving RBDO problems. A method to estimate the effect of the response surface error on the RBDO result is developed in this paper. The effect of the error is expressed in terms of the prediction interval, which is utilized as the error metric for the response surface used for RBDO. The prediction interval provides upper and lower bounds for the confidence level that the design engineer specified. Using the prediction interval of the response surface, the upper and lower limits of the reliability are computed. The lower limit of reliability is compared with the target reliability to obtain a conservative optimum design and thus safeguard against the inaccuracy of the response surface. On the other hand, in order to avoid obtaining a design that is too conservative, the developed method also constrains the upper limit of the reliability in the design optimization process. The proposed procedure is combined with an adaptive sampling strategy to refine the response surface. Numerical examples show the usefulness and the efficiency of the proposed method.

1.
Tu
,
J.
, and
Choi
,
K. K.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
121
(
4
), pp.
557
564
.
2.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2001, “
Design Potential Method for Robust System Parameter Design
,”
AIAA J.
0001-1452,
39
(
4
), pp.
667
677
.
3.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
4.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
,
New York
.
5.
Du
,
X.
, and
Chen
,
W.
, 2001, “
A Most Probable Point-Based Method for Efficient Uncertainty Analysis
,”
J. Design Manuf. Autom.
1532-0375,
4
(
1
), pp.
47
66
.
6.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability-Based Structural Design Optimization for Practical Applications
,”
38th AIAA SDM Conference
, Paper No. AIAA-97-1403.
7.
Qu
,
X.
, and
Haftka
,
R. T.
, 2002, “
Probabilistic Safety Factor Based Response Surface Approach for Reliability-Based Design Optimization
,”
Third ISSMO/AIAA Internet Conference on Approximations in Optimization
, Oct. 14–25.
8.
Rais-Rohani
,
M.
, and
Singh
,
M. N.
, 2004, “
Comparison of Global and Local Response Surface Techniques in Reliability-Based Optimization of Composite Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
5
), pp.
333
345
.
9.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2004, “
A New Response Surface Methodology for Reliability-Based Design Optimization
,”
Comput. Struct.
0045-7949,
82
(
2–3
), pp.
241
256
.
10.
Zhang
,
T.
,
Choi
,
K. K.
,
Rahman
,
S.
,
Cho
,
K.
,
Perry
,
B.
,
Shakil
,
M.
, and
Heitka
,
D.
, 2006, “
A Response Surface and Pattern Search Based Hybrid Optimization Method and Application to Microelectronics
,”
Struct. Multidiscip. Optim.
1615-147X,
32
(
4
), pp.
327
345
.
11.
Choi
,
K. K.
,
Youn
,
B. D.
, and
Yang
,
R. J.
, 2001, “
Moving Least Square Method for Reliability-Based Design Optimization
,”
Fourth World Congress of Structural and Multidisciplinary Optimization (WCSMO4)
, June,
Dalian
,
China
.
12.
Sherali
,
H. D.
, and
Ganesan
,
V.
, 2007, “
An Inverse Reliability-Based Approach for Designing Under Uncertainty With Application to Robust Piston Design
,”
J. Global Optim.
0925-5001,
37
(
1
), pp.
47
62
.
13.
Yeun
,
Y. S.
,
Kim
,
B. J.
,
Yang
,
Y. S.
, and
Ruy
,
W. S.
, 2005, “
Polynomial Genetic Programming for Response Surface Modeling Part 2: Adaptive Approximate Models With Probabilistic Optimization Problems
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
1
), pp.
35
49
.
14.
Booker
,
A. J.
,
Meckesheimer
,
M.
, and
Torng
,
T.
, 2004, “
Reliability Based Design Optimization Using Design Explorer
,”
Optim. Eng.
1389-4420,
5
(
2
), pp.
179
205
.
15.
Currin
,
C.
,
Mitchell
,
T.
,
Morris
,
M. D.
, and
Ylvisaker
,
D.
, 1991, “
Bayesian Prediction of Deterministic Functions, With Applications to the Design and Analysis of Computer Experiments
,”
J. Am. Stat. Assoc.
0162-1459,
86
(
416
), pp.
953
963
.
16.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
, 2001, “
Bayesian Calibration of Computer Experiments
,”
J. R. Stat. Soc. Ser. B (Methodol.)
0035-9246,
63
, pp.
425
464
.
17.
Handcock
,
M. S.
, and
Stein
,
M. L.
, 1993, “
A Bayesian Analysis of Kriging
,”
Technometrics
0040-1706,
35
, pp.
403
410
.
18.
Hazelrigg
,
G. A.
, 1999, “
On the Role and Use of Mathematical Models in Engineering Design
,”
ASME J. Mech. Des.
1050-0472,
121
(
3
), pp.
336
341
.
19.
Vittal
,
S.
, and
Hajela
,
P.
, 2002, “
Confidence Intervals for Reliability Estimated Using Response Surface Methods
,”
Proceedings of the Ninth AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, September,
Atlanta, GA
.
20.
Apley
,
D. W.
,
Luu
,
J.
, and
Chen
,
W.
, 2006, “
Understanding the Effects of Model Uncertainty in Robust Design With Computer Experiments
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
945
958
.
21.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2005, “
On the Use of Kriging Models to Approximate Deterministic Computer Models
,”
AIAA J.
0001-1452,
43
(
4
), pp.
853
863
.
22.
Martin
,
J. D.
, and
Simpson
,
T. W.
, 2006, “
A Methodology to Manage System-Level Uncertainty During Conceptual Design
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
959
968
.
23.
Mahadevan
,
S.
, and
Rebba
,
R.
, 2006, “
Inclusion of Model Errors in Reliability-Based Optimization
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
936
944
.
24.
Zhang
,
R.
, and
Mahadevan
,
S.
, 2000, “
Model Uncertainty and Bayesian Updating in Reliability-Based Inspection
,”
Struct. Safety
0167-4730,
22
(
2
), pp.
145
160
.
25.
Der Kiureghian
,
A.
, 2001, “
Analysis of Structural Reliability Under Model and Statistical Uncertainties: A Bayesian Approach
,”
Comput. Struct. Eng.
,
1
(
2
), pp.
81
87
.
26.
Myers
,
R. H.
, and
Montgomery
,
D. C.
, 1995,
Response Surface Methodology, Process and Product Optimization Using Designed Experiments
,
Wiley
,
New York
.
27.
Montgomery
,
D. C.
,
Runger
,
G. C.
, and
Hubele
,
N. F.
, 2004,
Engineering Statistics
,
Wiley
,
New York
.
28.
Seber
,
G. A. F.
, and
Lee
,
A. J.
, 2003,
Linear Regression Analysis
,
Wiley-Interscience
,
New York
.
29.
Kim
,
C.
,
Wang
,
S.
, and
Choi
,
K. K.
, 2005, “
Efficient Response Surface Modeling by Using Moving Least-Squares Method and Sensitivity
,”
AIAA J.
0001-1452,
43
(
11
), pp.
2404
2411
.
30.
Lancaster
,
P.
, and
Salkauskas
,
K.
, 1981, “
Surface Generated by Moving Least Squares Methods
,”
Math. Comput.
0025-5718,
37
(
155
), pp.
141
158
.
31.
Atkeson
,
C. G.
,
Moore
,
A. W.
, and
Schaal
,
S.
, 1997, “
Locally Weighted Learning
,”
Artif. Intell. Rev.
0269-2821,
11
(
1–5
), pp.
11
73
.
32.
Viana
,
S. A.
, and
Mesquita
,
R. C.
, 1999, “
Moving Least Square Reproducing Kernel Method for Electromagnetic Field Computation
,”
IEEE Trans. Magn.
0018-9464,
35
(
3
), pp.
1372
1375
.
33.
Shapiro
,
S. S.
, and
Wilk
,
M. B.
, 1965, “
An Analysis of Variance Test for Normality (Complete Samples)
,”
Biometrika
0006-3444,
52
(
3 and 4
), pp.
591
611
.
34.
Royston
,
J. P.
, 1982, “
An Extension of Shapiro and Wilk’s W Test for Normality to Large Samples
,”
Appl. Stat.
0285-0370,
31
, pp.
115
124
.
35.
2007, JMP Introductory Guide, Release 7, SAS Institute Inc., Cary, NC.
36.
Du
,
L.
,
Choi
,
K. K.
,
Youn
,
B. D.
, and
Gorsich
,
D.
, 2006, “
Possibility-Based Design Optimization Method for Design Problems With Both Statistical and Fuzzy Input Data
,”
ASME J. Mech. Des.
1050-0472,
128
(
4
), pp.
928
935
.
37.
Vanderplaats
,
G. M.
, 1997, DOT User’s Manual, VMA Corp.
38.
Tang
,
W. C.
,
Nguyen
,
T. H.
, and
Howe
,
R. T.
, 1989, “
Laterally Driven Polysilicon Resonant Microstructures
,” Proceedings of IEEE MEMS Conference, IEEE, Piscataway, NJ,
53
59
.
39.
Kim
,
C.
,
Wang
,
S.
,
Hwang
,
I.
, and
Lee
,
J.
, 2007, “
Application of Reliability-Based Topology Optimization for Microelectromechanical Systems
,”
AIAA J.
0001-1452,
45
(
12
), pp.
2926
2934
.
40.
DeSalvo
,
G. J.
, and
Swanson
,
J. A.
, 1989,
ANSYS Engineering Analysis System
, User’s Manual, Vols. I and II, Swanson Analysis Systems, Inc.
You do not currently have access to this content.