This paper extends previous work concerning convex reformulations of counterweight balancing by developing a general and numerically efficient design framework for counterweight balancing of arbitrarily complex planar linkages. At the numerical core of the framework is an iterative procedure, in which successively solving three convex optimization problems yields practical counterweight shapes in typically less than 1 CPU s. Several types of counterweights can be handled. The iterative procedure allows minimizing and/or constraining shaking force, shaking moment, driving torque, and bearing forces. Numerical experiments demonstrate the numerical superiority (in terms of computation time and balancing result) of the presented framework compared to existing approaches.

1.
Arakelian
,
V.
, and
Smith
,
M.
, 2005, “
Shaking Force and Shaking Moment Balancing of Mechanisms: A Historical Review With New Examples
,”
ASME J. Mech. Des.
0161-8458,
127
, pp.
334
339
.
2.
Dresig
,
H.
, and
Schönfeld
,
S.
, 1976, “
Rechnergestäutzte optimierung der antriebs-und gestellkraftgrössen ebener koppelgetriebe (Computer-Aided Optimization of Driving and Frame Reaction Forces of Planar Linkages)
,”
Mech. Mach. Theory
0094-114X,
11
(
6
), pp.
363
379
.
3.
Tricamo
,
S.
, and
Lowen
,
G.
, 1983, “
Simultaneous Optimization of Dynamic Reactions of a Four-Bar Linkage With Prescribed Maximum Shaking Force
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
105
, pp.
520
525
.
4.
Yan
,
H.
, and
Soong
,
R.
, 2001, “
Kinematic and Dynamic Design of Four-Bar Linkages by Links Counterweighting With Variable Input Speed
,”
Mech. Mach. Theory
0094-114X,
36
, pp.
1051
1071
.
5.
Chaudhary
,
H.
, and
Saha
,
S.
, 2007, “
Balancing of Four-Bar Linkages Using Maximum Recursive Dynamic Algorithm
,”
Mech. Mach. Theory
0094-114X,
42
, pp.
216
232
.
6.
Demeulenaere
,
B.
,
Aertbeliën
,
E.
,
Verschuure
,
M.
,
Swevers
,
J.
, and
De Schutter
,
J.
, 2006, “
Ultimate Limits for Counterweight Balancing of Crank-Rocker Four-Bar Linkages
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
1272
1284
.
7.
Boyd
,
S.
, and
Vandenberghe
,
L.
, 2004,
Convex Optimization
,
Cambridge University Press
,
Cambridge, England
.
8.
Verschuure
,
M.
,
Demeulenaere
,
B.
,
Swevers
,
J.
, and
De Schutter
,
J.
, 2008, “
Counterweight Balancing for Vibration Reduction of Elastically Mounted Machine Frames: A Second-Order Cone Programming Approach
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
022302
.
9.
Kochev
,
I.
, and
Gurdev
,
G.
, 1988, “
General Criteria for Optimum Balancing of Combined Shaking Force and Shaking Moment in Planar Linkages
,”
Mech. Mach. Theory
0094-114X,
23
(
6
), pp.
481
489
.
10.
Lowen
,
G.
,
Tepper
,
F.
, and
Berkof
,
R.
, 1974, “
The Quantitative Influence of Complete Force Balancing on the Forces and Moments of Certain Families of Four-Bar Linkages
,”
Mech. Mach. Theory
0094-114X,
9
, pp.
299
323
.
11.
1999, “
Blatt 1: Getriebedynamik-starrkörper mechanismen (Dynamics of Mechanisms-Rigid Body Mechanisms)
,” Verein Deutscher Ingenieure—Richtlinien, Paper No. VDI2149.
12.
Smith
,
M.
, 1975, “
Optimal Balancing of Planar Multi-Bar Linkages
,”
Proceedings of the 4th World Congress on the Theory of Machines and Mechanisms
, Newcastle-upon-Tyne, UK, pp.
145
149
.
13.
Haines
,
R.
, 1981, “
Minimum rms Shaking Moment or Driving Torque of a Force-Balanced 4-Bar Linkage Using Feasible Counterweights
,”
Mech. Mach. Theory
0094-114X,
16
, pp.
185
190
.
14.
Berkof
,
R.
, and
Lowen
,
G.
, 1969, “
A New Method for Completely Force Balancing Simple Linkages
,”
ASME J. Eng. Ind.
0022-0817,
91
(
1
), pp.
21
26
.
15.
Sadler
,
J.
, and
Mayne
,
R.
, 1973, “
Balancing of Mechanisms by Nonlinear Programming
,”
Third Applied Mechanism Conference
, Paper No. 29.
16.
Demeulenaere
,
B.
, 2004, “
Dynamic Balancing of Reciprocating Machinery With Application to Weaving Machines
,” Ph.D. thesis, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium.
17.
Tepper
,
F.
, and
Lowen
,
G.
, 1975, “
Shaking Force Optimization of Four-Bar Linkage With Adjustable Constraints on Ground Bearing Forces
,”
ASME J. Eng. Ind.
0022-0817,
97
(
2
), pp.
643
651
.
18.
Verschuure
,
M.
, 2009, “
Counterweight Balancing of Mechanisms Using Convex Optimization Techniques
,” Ph.D. thesis, Department of Mechanical Engineering, Katholieke Universiteit Leuven, Belgium.
19.
Demeulenaere
,
B.
,
Swevers
,
J.
, and
De Schutter
,
J.
, 2006, “
Ultimate and Practical Limits for Counterweight Balancing of Six-Bar Linkages
,”
ASME
Paper No. DETC2006-99219.
20.
Löfberg
,
J.
, 2004, “
Yalmip: A Toolbox for Modeling and Optimization in Matlab
,”
Proceedings of the 2004 IEEE CCA/ISIC/CACSD
, Taipei, Taiwan, Paper No. SaM09.1.
21.
Sturm
,
J.
, 1999, “
Using SeDuMi 1.02, a Matlab Toolbox for Optimization Over Symmetric Cones
,”
Optim. Methods Software
1055-6788,
11
, pp.
625
653
.
You do not currently have access to this content.