Nonlinear springs enhance the performance of many applications including prosthetics, microelectromechanical systems devices, and vibration absorption systems. This paper describes a comprehensive approach to developing compliant elements of prescribed nonlinear stiffness. It presents a generalized methodology for designing a single planar nonlinear spring for a prescribed load-displacement function. The spring’s load-range, displacement-range, and nonlinear behavior are matched using this methodology, while also addressing stress, material, stability, and space constraints. Scaling guidelines are included within the optimization to relax the constraints on the solution space. Given the nonlinear nature of the spring designs, this paper further investigates their function in new configurations. Compliant structures with customized elastic properties are constructed by exploiting symmetry and by arranging nonlinear springs in series and/or in parallel. Scaling guidelines are used to meet new design specifications. The guidelines allow adjustment of load-range, displacement-range, material, and the overall footprint while preserving the spring’s nonlinear behavior without violating stress constraints. Various examples are provided throughout the paper to demonstrate the implementation and merit of these design approaches.

1.
Vogel
,
S.
, 1998,
Cats’ Paws and Catapults
,
W. W. Norton
,
New York
.
2.
Rhoads
,
J. F.
,
Shaw
,
S. W.
,
Turner
,
K. L.
, and
Baskaran
,
R.
, 2005, “
Tunable Microelectromechanical Filters That Exploit Parametric Resonance
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
5
), pp.
423
430
.
3.
Bajaj
,
A.
, and
Krousgrill
,
C. M.
, 2001, “
Nonlinear System Resonance Phenomena
,”
Encyclopedia of Vibrations
,
S. G.
Braun
, ed.,
Academic
,
San Diego, CA
, pp.
928
935
.
4.
Herder
,
J.
, 2001, “
Energy-Free Systems. Theory, Conception, and Design of Statically Balanced Spring Mechanisms
,” Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
5.
Pedersen
,
C. B. W.
, 2003, “
Topology Optimization Design of Crushed 2D-Frames for Desired Energy Absorption History
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
5–6
), pp.
268
382
.
6.
Migliore
,
S. A.
,
Brown
,
E. A.
, and
DeWeerth
,
S. P.
, 2007, “
Novel Nonlinear Elastic Actuators for Passively Controlling Robotic Joint Compliance
,”
ASME J. Mech. Des.
0161-8458,
129
(
4
), pp.
406
412
.
7.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
, 2007, “
Suppressing Aeroelastic Instability by Means of Broadband Passive Targeted Energy Transfers, Part 1: Theory
,”
AIAA J.
0001-1452,
45
(
3
), pp.
693
711
.
8.
Lee
,
Y. S.
,
Kerschen
,
G.
,
McFarland
,
D. M.
,
Hill
,
W. J.
,
Nichkawde
,
C.
,
Strganac
,
T. W.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2007, “
Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 2: Experiments
,”
AIAA J.
0001-1452,
45
(
10
), pp.
2391
2400
.
9.
Ananthasuresh
,
G. K.
,
Kota
,
S.
, and
Kikuchi
,
K.
, 1994, “
Strategies for Systematic Synthesis of Compliant MEMS
,”
International Mechanical Engineering Congress and Exposition
, Chicago, IL,
ASME
,
New York
, Vol.
55
, pp.
677
686
.
10.
Frecker
,
M.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
N.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
ASME J. Mech. Des.
0161-8458,
119
(
2
), pp.
238
245
.
11.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
495
526
.
12.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
229
234
.
13.
Joo
,
Y.
,
Kota
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topological Synthesis of Compliant Mechanisms Using Linear Beam Elements
,”
Mech. Struct. Mach.
0890-5452,
28
(
4
), pp.
245
280
.
14.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Optimization of Compliant Mechanisms With Strength Considerations
,”
Mech. Struct. Mach.
0890-5452,
29
, pp.
199
221
.
15.
Lu
,
K.
, and
Kota
,
S.
, 2003, “
Design of Compliant Mechanisms for Morphing Structural Shapes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
14
(
6
), pp.
379
391
.
16.
Buhl
,
T.
,
Pedersen
,
C. B. W.
, and
Sigmund
,
O.
, 2000, “
Stiffness Design of Geometrically Non-Linear Structures Using Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
2
), pp.
93
104
.
17.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26–27
), pp.
3443
59
.
18.
Pedersen
,
C.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
, pp.
2683
2705
.
19.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
ASME J. Mech. Des.
0161-8458,
123
(
1
), pp.
33
42
.
20.
Joo
,
J.
, and
Kota
,
S.
, 2004, “
Topological Synthesis of Compliant Mechanisms Using Nonlinear Beam Elements
,”
Mech. Based Des. Struct. Mach.
1539-7734,
32
(
1
), pp.
17
38
.
21.
Rai
,
A. K.
,
Saxena
,
A.
, and
Mankame
,
N. D.
, 2007, “
Synthesis of Path Generating Compliant Mechanisms Using Initially Curved Frame Elements
,”
ASME J. Mech. Des.
0161-8458,
129
(
10
), pp.
1056
1063
.
22.
Pedersen
,
C. B. W.
,
Fleck
,
N. A.
, and
Ananthasuresh
,
G. K.
, 2006, “
Design of a Compliant Mechanism to Modify an Actuator Characteristic to Deliver a Constant Output Force
,”
ASME J. Mech. Des.
0161-8458,
128
(
5
), pp.
1101
1112
.
23.
Oh
,
Y. S.
, and
Kota
,
S.
, 2009, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
131
, p.
021002
.
24.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
,
Wiley
,
New York
.
25.
Xu
,
D.
, and
Ananthasuresh
,
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanisms
,”
ASME J. Mech. Des.
0161-8458,
125
(
2
), pp.
253
261
.
26.
Zhou
,
H.
, and
Ting
,
K.
, 2006, “
Shape and Size Synthesis of Compliant Mechanisms Using Wide Curve Theory
,”
ASME J. Mech. Des.
0161-8458,
128
(
3
), pp.
551
8
.
27.
Lan
,
C.
, and
Cheng
,
Y.
, 2008, “
Distributed Shape Optimization of Compliant Mechanisms Using Intrinsic Functions
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
072304
.
28.
Jutte
,
C. V.
, and
Kota
,
S.
, 2008, “
Design of Nonlinear Springs for Prescribed Load-Displacement Functions
,”
ASME J. Mech. Des.
0161-8458,
130
(
8
), p.
081403
.
29.
Jutte
,
C. V.
, 2008, “
Generalized Synthesis Methodology of Nonlinear Springs for Prescribed Load-Displacement Functions
,” Ph.D. thesis, University of Michigan, Ann Arbor.
30.
Beer
,
F. P.
, and
Johnston
,
E. R.
, 1992,
Mechanics of Materials
,
McGraw-Hill
,
New York
.
31.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium: I. A New Functional Form
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
333
339
.
32.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium: II. Parameter Estimation
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
340
346
.
33.
Craig
,
R. R.
, 2000,
Mechanics of Materials
,
Wiley
,
New York
.
34.
Knauf
,
T.
,
LaValley
,
R.
,
Sivulka
,
B.
, and
Thomas
,
J.
, 2006, “
Compliant Seat Cushion Pan for an Automotive Seat
,” University of Michigan.
You do not currently have access to this content.