In this paper, a compliant parallel-arm mechanism design with a desired trajectory control is investigated. The compliant parallel-arm mechanism consists of two large-deflecting initially straight beams and a rigid coupler. The coupler is assumed to be actuated by a magnetic force drive with an obtainable force history. This compliant parallel-arm mechanism can be used as an indexing mechanism or a dwell mechanism if the rigid coupler horizontal trajectory includes stops at a certain horizontal displacement (rise) and it also includes waiting periods at the specified rise for a desired duration. This trajectory is achieved by using a conventional proportional-integral-derivative type trajectory controller that uses position, velocity, and acceleration information. The theory and the presented results are checked by several methods, including geometrically nonlinear finite element analysis, then a simulation based method, and finally an experimental method. The experimental setup is constructed based on a reverse engineering concept to validate the theory and to confirm the simulation results.

1.
Sreekumar
,
M.
,
Nagarajan
,
T.
, and
Singaperumal
,
M.
, 2009, “
Design of a Shape Memory Alloy Actuated Compliant Smart Structure: Elastica Approach
,”
ASME J. Mech. Des.
0161-8458,
131
(
6
), p.
061008
.
2.
Wilson
,
J. F.
, and
Snyder
,
J. M.
, 1988, “
The Elastica With End Load Flip Over
,”
ASME J. Appl. Mech.
0021-8936,
55
(
4
), pp.
845
848
.
3.
Nahvi
,
H.
, 1991, “
Static and Dynamic Analysis of Compliant Mechanisms Containing Highly Flexible Members
,” Ph.D. thesis, Purdue University, West Lafayette, IN.
4.
Lyon
,
S. M.
,
Erickson
,
P. A.
,
Evans
,
M. S.
, and
Howell
,
L. L.
, 1999, “
Prediction of the First Modal Frequency of Compliant Mechanisms Using the Pseudo-Rigid Body Model
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
309
312
.
5.
Boyle
,
C.
,
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Evans
,
M. S.
, 2003, “
Dynamic Modeling of Compliant Constant-Force Compression Mechanisms
,”
Mech. Mach. Theory
0094-114X,
38
, pp.
1469
1487
.
6.
Hendriks
,
F.
, 1983, “
Bounce and Chaotic Motion in Print Hammers
,”
IBM J. Res. Dev.
0018-8646,
27
(
3
), pp.
273
280
.
7.
Fite
,
K.
, and
Goldfarb
,
M.
, 1999, “
Position Control of a Compliant Mechanism Based Micromanipulator
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
3
, pp.
2122
2127
.
9.
Speich
,
J.
, and
Goldfarb
,
M.
, 2000, “
A Compliant-Mechanism-Based Three-Degree-of-Freedom Manipulator for Small Scale Manipulation
,”
Robotica
0263-5747,
18
(
1
), pp.
95
104
.
10.
Kajikawa
,
S.
, 2007, “
Robot Hand With Soft Compliant Mechanism for Human Body Care
,”
Proceedings of the Robotics and Applications and Telematics
, Paper No. 563.
11.
Grossard
,
M.
,
Rotinat-Libersa
,
C.
,
Chaillet
,
N.
, and
Boukallel
,
M.
, 2009, “
Mechanical and Control-Oriented Design of a Monolithic-Piezoelectric Microgripper Using a New Topological Optimization Method
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
14
(
1
), pp.
32
45
.
12.
Wang
,
J. -C.
,
Rong
,
W. -B.
,
Li
,
X. -X.
,
Sun
,
L. -N.
, and
Ma
,
L.
, 2009, “
Integrating Positioning X-Y Stage Based on Bulk Micromachining
,”
Optics and Precision Engineering
,
17
(
2
), pp.
333
340
.
13.
Zhou
,
Q.
,
Ben-Tzvi
,
P.
,
Fan
,
D.
, and
Goldenberg
,
A. A.
, 2008, “
Design of Fast Steering Mirror Systems for Precision Laser Beams Steering
,”
IEEE International Workshop on Robotic and Sensors Environments Proceedings
, Article No. 4669196, pp.
144
149
.
14.
Liaw
,
H. C.
, and
Shirinzadeh
,
B.
, 2008, “
‘Robust Generalized Impedance Control of Piezo-Actuated Flexure-Based Four-Bar Mechanisms for Micro/Nano Manipulation
,”
Sens. Actuators, A
0924-4247,
148
(
2
), pp.
443
453
.
15.
Mohd Zubir
,
M. N.
, and
Shirinzadeh
,
B.
, 2008, “
Development of a Compliant-Based Microgripper for Micro Assembly
,”
IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications, MESA 2008
, Article No. 4735754, pp.
522
527
.
16.
Zhang
,
D.
,
Viegas
,
K.
,
Gao
,
Z.
, and
Ge
,
Y.
, 2008, “
Modeling and Analysis of an Enhanced Compliant Parallel Mechanism for High Accuracy Micro Motion
,”
Proceedings of the World Congress on Intelligent Control and Automation (WCICA)
, Article No. 4593279, pp.
2289
2294
.
17.
Trease
,
B. P.
and
Kota
,
S.
, 2009, “
Design of Adaptive and Controllable Compliant Systems with Embedded Actuators and Sensors
,”
ASME J. Mech. Des.
0161-8458,
131
(
11
), p.
111001
.
18.
Hubbard
,
N. B.
,
Culpepper
,
M. L.
, and
Howell
,
L. L.
, 2006, “
Actuators for Micropositioners and Nanopositioners
,”
Appl. Mech. Rev.
0003-6900,
59
, pp.
324
334
.
19.
Frisch-Fay
,
R.
, 1962,
Flexible Bars
,
Butterworth
,
London
.
20.
Sathyamoorty
,
M.
, 1998,
Nonlinear Analysis of Structures
,
CRC
,
New York
, Chap. 1.5.
21.
Grujic
,
L. T.
, 1993, “
On the Tracking Problem for Nonlinear Systems
,”
Applied Control
,
S. G.
Tzafestas
, ed.,
Dekker
,
New York
, pp.
325
343
.
22.
Demirel
,
B.
,
Emirler
,
M. T.
,
Yorukoglu
,
A.
,
Koca
,
N.
, and
Sönmez
,
Ü.
, 2008, “
Compliant Impact Generator for Required Impact and Contact Force
,”
Proceedings of ASME 2008 International Mechanical Engineering Congress and Exposition (IMECE2008)
, Vol.
11
, pp.
373
379
.
23.
Asada
,
H.
, and
Slotine
,
J. J. E.
, 1986,
Robot Analysis and Control
,
John Wiley
,
New York
, p.
139
.
24.
Anand
,
D. K.
, and
Zmood
,
R. B.
, 1995,
Introduction to Control Systems
, 3rd ed.,
Butterworth
,
Heinemann
, pp.
660
661
.
25.
Howell
,
L. L.
, 2001,
Compliant Mechanisms
, 1st ed.,
Wiley
,
New York
.
You do not currently have access to this content.