Practical design optimization problems require use of computationally expensive “black-box” functions. The Pareto set pursuing (PSP) method, for solving multi-objective optimization problems with expensive black-box functions, was originally developed for continuous variables. In this paper, modifications are made to allow solution of problems with mixed continuous-discrete variables. A performance comparison strategy for nongradient-based multi-objective algorithms is discussed based on algorithm efficiency, robustness, and closeness to the true Pareto front with a limited number of function evaluations. Results using several methods, along with the modified PSP, are given for a suite of benchmark problems and two engineering design ones. The modified PSP is found to be competitive when the total number of function evaluations is limited, but faces an increased computational challenge when the number of design variables increases.

1.
Keeney
,
R. L.
, and
Raifa
,
H.
, 1976,
Decisions With Multiple Objective: Preferences and Value Trade-Off
,
Wiley
,
New York
.
2.
Marler
,
R. T.
, and
Arora
,
J. S.
, 2004, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
1615-147X,
26
, pp.
369
395
.
3.
Chen
,
W.
,
Wiecek
,
M. M.
, and
Zhang
,
J.
, 1999, “
Quality Utility—A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
0161-8458,
121
, pp.
179
187
.
4.
Messac
,
A.
, 1996, “
Physical Programming: Effective Optimization for Computational Design
,”
AIAA J.
0001-1452,
34
(
1
), pp.
149
158
.
5.
Tappeta
,
R. V.
, and
Renaud
,
J. E.
, 1999, “
Interactive Multiobjective Optimization Procedure
,”
AIAA J.
0001-1452,
37
(
7
), pp.
881
889
.
6.
Tappeta
,
R. V.
,
Renaud
,
J. E.
,
Messac
,
A.
, and
Sundararaj
,
G.
, 2000, “
Interactive Physical Programming: Tradeoff Analysis and Decision Making in Multicriteria Optimization
,”
AIAA J.
0001-1452,
38
(
5
), pp.
917
926
.
7.
Tappeta
,
R. V.
, and
Renaud
,
J. E.
, 2001, “
Interactive Multiobjective Optimization Design Strategy for Decision Based Design
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
205
215
.
8.
Schaumann
,
E. J.
,
Balling
,
R. J.
, and
Day
,
K.
, 1998, “
Genetic Algorithms With Multiple Objectives
,”
Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, St. Louis, MO, Sept. 2–4, Vol.
3
, pp.
2114
2123
, Paper No. AIAA-98-4974.
9.
Deb
,
K.
, 1999, “
Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design
,”
Proceedings of Evolutionary Algorithms in Engineering and Computer Science, Eurogen-99
.
10.
Deb
,
K.
,
Mohan
,
M.
, and
Mishra
,
S.
, 2003, “
A Fast Multi-Objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions
,” Indian Institute of Technology Kanpur Report No. 2003002.
11.
Srinivas
,
N.
, and
Deb
,
K.
, 1994, “
Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
1063-6560,
2
(
3
), pp.
221
248
.
12.
Nain
,
P. K. S.
, and
Deb
,
K.
, 2002, “
A Computationally Effective Multi-Objective Search and Optimization Technique Using Coarse-to-Fine Grain Modeling
,” Indian Institute of Technology Kanpur, Report No. 2002005.
13.
Luh
,
G. C.
,
Chueh
,
C. H.
, and
Liu
,
W. W.
, 2003, “
MOIA: Multi-Objective Immune Algorithm
,”
Eng. Optimiz.
0305-215X,
35
(
2
), pp.
143
164
.
14.
Deb
,
K.
, and
Jain
,
S.
, 2003, “
Multi-Speed Gearbox Design Using Multi-Objective Evolutionary Algorithms
,”
ASME J. Mech. Des.
0161-8458,
125
, pp.
609
619
.
15.
Cetin
,
O. L.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Structural Modularity
,”
ASME J. Mech. Des.
0161-8458,
126
, pp.
234
243
.
16.
Isaacs
,
A.
,
Ray
,
T.
, and
Smith
,
W.
, 2009, “
Multi-Objective Design Optimization Using Multiple Adaptive Spatially Distributed Surrogates
,”
International Journal of Product Development
,
9
(
1/2/3
), pp.
188
217
.
17.
Shan
,
S.
, and
Wang
,
G. G.
, 2005, “
An Efficient Pareto Set Identification Approach for Multi-Objective Optimization on Black-Box Functions
,”
ASME J. Mech. Des.
0161-8458,
127
(
5
), pp.
866
874
.
18.
Duan
,
X.
,
Wang
,
G. G.
,
Kang
,
K.
,
Niu
,
Q.
,
Naterer
,
G.
, and
Peng
,
Q.
, 2009, “
Performance Study of Mode-Pursuing Sampling Method
,”
Eng. Optimiz.
0305-215X,
41
(
1
), pp.
1
21
.
19.
Wilson
,
B.
,
Cappelleri
,
D. J.
,
Simpson
,
T. W.
, and
Frecker
,
M. I.
, 2001, “
Efficient Pareto Frontier Exploration Using Surrogate Approximations
,”
Optim. Eng.
1389-4420,
2
, pp.
31
50
.
20.
Li
,
Y.
,
Fadel
,
G. M.
, and
Wiecek
,
M. M.
, 1998, “
Approximating Pareto Curves Using the Hyper-Ellipse
,”
Seventh AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, St. Louis, MO, Paper No. AIAA-98-4961.
21.
Yang
,
B. S.
,
Yeun
,
Y. S.
, and
Ruy
,
W. S.
, 2002, “
Managing Approximation Models in Multiobjective Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
, pp.
141
156
.
22.
Li
,
M.
,
Li
,
G.
, and
Azarm
,
S.
, 2008, “
A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization
,”
ASME J. Mech. Des.
0161-8458,
130
(
3
), p.
031401
.
23.
Karakasis
,
M. K.
, and
Giannakoglou
,
K. C.
, 2005, “
Metamodel Assisted Multi-Objective Evolutionary Optimization
,”
ECCOMAS Thematic Conference
, Munich, Sept. 12–14.
24.
Wang
,
L.
,
Shan
,
S.
, and
Wang
,
G. G.
, 2004, “
Mode-Pursuing Sampling Method for Global Optimization on Expensive Black-Box Functions
,”
Eng. Optimiz.
0305-215X,
36
(
4
), pp.
419
438
.
25.
Wu
,
J.
, and
Azarm
,
S.
, 2001, “
Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
18
25
.
26.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
1089-778X,
6
, pp.
183
197
.
27.
Hansen
,
S. R.
, and
Vanderplaats
,
G. N.
, 1990, “
Approximation Method for Configuration Optimization of Trusses
,”
AIAA J.
0001-1452,
28
, pp.
161
168
.
28.
Durillo
,
J. J.
,
Nebro
,
A. J.
,
Luna
,
F.
,
Dorronsoro
,
B.
, and
Alba
,
E.
, 2006, “
{jMetal}: A Java Framework for Developing Multi-Objective Optimization Metaheuristics
,” University of Malaga, http://mallba10.lcc.uma.es/wiki/index.php/Toolshttp://mallba10.lcc.uma.es/wiki/index.php/Tools, Paper No. ITI-2006-10.
29.
Zhou
,
A.
,
Jin
,
Y.
,
Zhang
,
Q.
,
Sendhof
,
B.
, and
Tsang
,
E.
, 2006, “
Combining Model-Based and Genetic-Based Offspring Generation for Multi-Objective Optimization Using a Convergence Criterion
,”
2006 IEEE Congress on Evolutionary Computation
, pp.
3234
3241
.
30.
Schaffer
,
J. D.
, 1985, “
Multiple Objective Optimization With Vector Evaluated Genetic Algorithms
,”
Proceedings of the First International Conference on Genetic Algorithms and Their Applications
, Carnegie-Mellon University, Pittsburgh, Jul. 24–26, pp.
93
100
.
31.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
, 1998, “
Multiobjective Optimization and Multiple Constraint Handling With Evolutionary Algorithms. II. Application Example
,”
IEEE Trans. Syst. Man Cybern., Part A. Syst. Humans
1083-4427,
28
, pp.
38
47
.
32.
Kursawe
,
F.
, 1991, “
A Variant of Evolution Strategies for Vector Optimization
,”
Parallel Problem Solving from Nature
,
Lecture Notes in Computer Science
, Vol.
496
, pp.
193
197
.
33.
Zitzler
,
E.
,
Deb
,
K.
, and
Thiele
,
L.
, 2000, “
Comparison of Multiobjective Evolutionary Algorithms: Empirical Results
,”
Evol. Comput.
1063-6560,
8
(
2
), pp.
173
195
.
34.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
, 2002, “
Scalable Multi-Objective Optimization Test Problems
,”
Congress on Evolutionary Computation
, Vol.
1
, pp.
825
830
.
35.
Nebro
,
A. J.
,
Luna
,
F.
,
Alba
,
E.
,
Dorronsoro
,
B.
,
Durillo
,
J. J.
, and
Beham
,
A.
, 2008, “
AbYSS: Adapting Scatter Search to Multiobjective Optimization
,”
IEEE Trans. Evol. Comput.
1089-778X,
12
, pp.
439
457
.
36.
Durillo
,
J. J.
,
Nebro
,
A. J.
,
Luna
,
F.
, and
Alba
,
E.
, 2008, “
Solving Three-Objective Optimization Problems Using a New Hybrid Cellular Genetic Algorithm
,”
Proceedings of the Tenth International Conference on Parallel Problem Solving From Nature
, Technischie Universitat Dortmund, Germany, Sept. 13–17, pp.
661
670
.
37.
Eskandari
,
H.
, and
Geiger
,
C. D.
, 2008, “
A Fast Pareto Genetic Algorithm Approach for Solving Expensive Multiobjective Optimization Problems
,”
J. Heuristics
1381-1231,
14
, pp.
203
241
.
38.
Reyes
,
M.
, and
Coello
,
C. A.
, 2005, “
Improving PSO-Based Multi-Objective Optimization Using Crowding, Mutation and Epsilon-Dominance
,”
Proceedings of Third International Conference on Evolutionary Multi-Criterion Optimization
, Guanajuato, Mexico, Mar. 9–11, pp.
505
519
.
39.
Zitzler
,
E.
,
Laumanns
,
M.
, and
Thiele
,
L.
, 2002, “
SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization
,”
Proceedings of the Conference on Evolutionary Methods for Design Optimization and Control
, CIMNE Barcelona, Spain, pp.
95
100
.
40.
Deb
,
K.
,
Sundar
,
J.
,
Rao
,
U. B.
, and
Chaudhuri
,
S.
, 2006, “
Reference Point Based Multi-Objective Optimization Using Evolutionary Algorithms
,”
Int. J. Comput. Intell. Appl.
1469-0268,
2
(
3
), pp.
273
286
.
You do not currently have access to this content.