The main limitations of currently available artificial spinal discs are geometric unfit and unnatural motion. Multi-material additive manufacturing (AM) offers a potential solution for the fabrication of personalized free-form implants with a better fit and variable material distribution to achieve a set of target physiological stiffnesses. The structure of the artificial spinal disc proposed in this paper is inspired from a natural disc and includes both a matrix and a crisscross fiber-like structure, where the design variables are their material properties. After carrying out design variable reduction using linking strategies, a finite element-based optimization is then conducted to calculate the optimized material distribution to achieve physiological stiffness under five loading cases. The results show a good match in stiffness of the multi-material disc compared with the natural disc and that the multi-material artificial disc outperforms a current known solution, the ball-and-socket disc. Moreover, the potential of achieving an improved match in stiffness with a larger range of available 3D printable materials is demonstrated. Although the direct surgical implantation of the design is hindered currently by the biocompatibility of the 3D printed materials, a potential improvement of the design proposed is shown.

References

1.
Hoy
,
D.
,
Brooks
,
P.
,
Blyth
,
F.
, and
Buchbinder
,
R.
,
2010
, “
The Epidemiology of Low Back Pain
,”
Best Pract. Res. Clin. Rheumatol.
,
24
(
6
), pp.
769
781
.
2.
Yang
,
H.
,
Liu
,
H.
,
Li
,
Z.
,
Zhang
,
K.
,
Wang
,
J.
,
Wang
,
H.
, and
Zheng
,
Z.
,
2015
, “
Low Back Pain Associated With Lumbar Disc Herniation: Role of Moderately Degenerative Disc and Annulus Fibrous Tears
,”
Int. J. Clin. Exp. Med.
,
8
(
2
), p.
1634
.
3.
Chung
,
S. K.
,
Kim
,
Y. E.
, and
Wang
,
K. C.
,
2009
, “
Biomechanical Effect of Constraint in Lumbar Total Disc Replacement: A Study With Finite Element Analysis
,”
Spine
,
34
(
12
), pp.
1281
1286
.
4.
Dahl
,
M. C.
,
Jacobsen
,
S.
,
Metcalf
,
N.
,
Sasso
,
R.
, and
Ching
,
R. P.
,
2011
, “
A Comparison of the Shock-Absorbing Properties of Cervical Disc Prosthesis Bearing Materials
,”
Int. J. Spine Surg.
,
5
(
2
), pp.
48
54
.
5.
Chen
,
J. W.
,
Chen
,
W. C.
,
Lai
,
Y. S.
,
Chang
,
C. M.
, and
Wang
,
S. T.
,
2015
, “
Effect of a Novel Compressible Artificial Disk on Biomechanical Performance of Cervical Spine: A Finite Element Study
,”
Adv. Mech. Eng.
,
7
(
8
), pp.
1
5
.
6.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.
7.
Van Ooij
,
A.
,
Oner
,
F. C.
, and
Verbout
,
A. J.
,
2003
, “
Complications of Artificial Disc Replacement: A Report of 27 Patients With the SB Charite Disc
,”
Spine
,
16
(
4
), pp.
369
383
.
8.
Siepe
,
C. J.
,
Wiechert
,
K.
,
Khattab
,
M. F.
,
Korge
,
A.
, and
Mayer
,
H. M.
,
2007
, “
Total Lumbar Disc Replacement in Athletes: Clinical Results, Return to Sport and Athletic Performance
,”
Eur. Spine J.
,
16
(
7
), pp.
1001
1013
.
9.
Auerbach
,
J. D.
,
Ballester
,
C. M.
,
Hammond
,
F.
,
Carine
,
E. T.
,
Balderston
,
R. A.
, and
Elliott
,
D. M.
,
2010
, “
The Effect of Implant Size and Device Keel on Vertebral Compression Properties in Lumbar Total Disc Replacement
,”
Spine J.
,
10
(
4
), pp.
333
340
.
10.
Kim
,
S. H.
,
Chang
,
U. K.
,
Chang
,
J. C.
,
Chun
,
K. S.
,
Lim
,
T. J.
, and
Kim
,
D. H.
,
2009
, “
The Changes in Range of Motion After a Lumbar Spinal Arthroplasty With Charité™ in the Human Cadaveric Spine Under Physiologic Compressive Follower Preload: A Comparative Study Between Load Control Protocol and Hybrid Protocol
,”
J. Korean Neurosurg. Soc.
,
46
(
2
), p.
144
.
11.
Chung
,
S. S.
,
Lee
,
C. S.
,
Kang
,
C. S.
, and
Kim
,
S. H.
,
2006
, “
The Effect of Lumbar Total Disc Replacement on the Spinopelvic Alignment and Range of Motion of the Lumbar Spine
,”
Clin. Spine Surg.
,
19
(
5
), pp.
307
311
.
12.
Shikinami
,
Y.
,
Kotani
,
Y.
,
Cunningham
,
B. W.
,
Abumi
,
K.
, and
Kaneda
,
K.
,
2004
, “
A Biomimetic Artificial Disc With Improved Mechanical Properties Compared to Biological Intervertebral Discs
,”
Adv. Funct. Mater.
,
14
(
11
), pp.
1039
1046
.
13.
Van den Broek
,
P. R.
,
Huyghe
,
J. M.
,
Wilson
,
W.
, and
Ito
,
K.
,
2012
, “
Design of Next Generation Total Disk Replacements
,”
J. Biomech.
,
45
(
1
), pp.
134
140
.
14.
Fu
,
K.
,
Moreno
,
D.
,
Yang
,
M.
, and
Wood
,
K. L.
,
2014
, “
Bio-Inspired Design: An Overview Investigating Open Questions From the Broader Field of Design-by-Analogy
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111102
.
15.
Stanković
,
T.
,
Mueller
,
J.
,
Egan
,
P.
, and
Shea
,
K.
,
2015
, “
A Generalized Optimality Criteria Method for Optimization of Additively Manufactured Multimaterial Lattice Structures
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111405
.
16.
Domanski
,
J.
,
Skalski
,
K.
,
Grygoruk
,
R.
, and
Mróz
,
A.
,
2015
, “
Rapid Prototyping in the Intervertebral Implant Design Process
,”
Rapid Prototyp. J.
,
21
(
6
), pp.
735
746
.
17.
Mroz
,
A.
,
Skalski
,
K.
, and
Walczyk
,
W.
,
2015
, “
New Lumbar Disc Endoprosthesis Applied to the Patient’s Anatomic Features
,”
Acta Bioeng. Biomech.
,
17
(
2
), pp.
25
34
.
18.
Hiller
,
J.
, and
Lipson
,
H.
,
2009
, “
Design and Analysis of Digital Materials for Physical 3D Voxel Printing
,”
Rapid Prototyp. J.
,
15
(
2
), pp.
137
149
.
19.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
.
20.
Smith
,
L. J.
, and
Fazzalari
,
N. L.
,
2009
, “
The Elastic Fibre Network of the Human Lumbar Anulus Fibrosus: Architecture, Mechanical Function and Potential Role in the Progression of Intervertebral Disc Degeneration
,”
Eur. Spine J.
,
18
(
4
), pp.
439
448
.
21.
Korez
,
R.
,
Likar
,
B.
,
Pernuš
,
F.
, and
Vrtovec
,
T.
,
2014
, “
Parametric Modeling of the Intervertebral Disc Space in 3D: Application to CT Images of the Lumbar Spine
,”
Comput. Med. Imaging Graph.
,
38
(
7
), pp.
596
605
.
22.
Ionita
,
C. N.
,
Mokin
,
M.
,
Varble
,
N.
,
Bednarek
,
D. R.
,
Xiang
,
J.
,
Snyder
,
K. V.
,
Siddiqui
,
A. H.
,
Levy
,
E. I.
,
Meng
,
H.
, and
Rudin
,
S.
,
2014
, “
Challenges and Limitations of Patient-Specific Vascular Phantom Fabrication Using 3D Polyjet Printing
,”
Medical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging
,
San Diego, CA
,
Mar. 13
, Vol. 9038, p. 90380M.
23.
Khoo
,
Z. X.
,
Teoh
,
J. E. M.
,
Liu
,
Y.
,
Chua
,
C. K.
,
Yang
,
S.
,
An
,
J.
,
Leong
,
K. F.
, and
Yeong
,
W. Y.
,
2015
, “
3D Printing of Smart Materials: A Review on Recent Progresses in 4D Printing
,”
Virtual Phys. Prototyp.
,
10
(
3
), pp.
103
122
.
24.
Meisel
,
N. A.
,
Elliott
,
A. M.
, and
Williams
,
C. B.
,
2015
, “
A Procedure for Creating Actuated Joints via Embedding Shape Memory Alloys in PolyJet 3D Printing
,”
J. Intel. Mat. Syst. Struct.
,
26
(
12
), pp.
1498
1512
.
25.
Neubert
,
A.
,
Fripp
,
J.
,
Engstrom
,
C.
,
Schwarz
,
R.
,
Lauer
,
L.
,
Salvado
,
O.
, and
Crozier
,
S.
,
2012
, “
Automated Detection, 3D Segmentation and Analysis of High Resolution Spine MR Images Using Statistical Shape Models
,”
Phys. Med. Biol.
,
57
(
24
), p.
8357
.
26.
Yokoya
,
N.
,
Kaneta
,
M.
, and
Yamamoto
,
K.
,
1992
, “
Recovery of Superquadric Primitives From a Range Image Using Simulated Annealing
,”
Proceedings of the 11th IAPR International Conference on Pattern Recognition
,
IEEE
, pp.
168
172
.
27.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Dover Publications
,
Mineola, NY
.
28.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
,
2001
, “
Topology Optimization of Non-Linear Elastic Structures and Compliant Mechanisms
,”
Comput. Method. Appl. Mech. Eng.
,
190
(
26–27
), pp.
3443
3459
.
29.
Kolda
,
T. G.
,
Lewis
,
R. M.
, and
Torczon
,
V.
,
2003
, “
Optimization by Direct Search: New Perspectives on Some Classical and Modern Methods
,”
SIAM Rev.
,
45
(
3
), pp.
385
482
.
30.
Hemker
,
T.
,
Fowler
,
K. R.
,
Farthing
,
M. W.
, and
von Stryk
,
O.
,
2008
, “
A Mixed-Integer Simulation-Based Optimization Approach with Surrogate Functions in Water Resources Management
,”
Optim. Eng.
,
9
(
4
), pp.
341
360
.
31.
Nguyen
,
A. T.
,
Reiter
,
S.
, and
Rigo
,
P.
,
2014
, “
A Review on Simulation-Based Optimization Methods Applied to Building Performance Analysis
,”
Appl. Energy
,
113
, pp.
1043
1058
.
32.
Lewis
,
R. M.
,
Torczon
,
V.
, and
Trosset
,
M. W.
,
2000
, “
Direct Search Methods: Then and Now
,”
J. Comput. Appl. Math.
,
124
(
1–2
), pp.
191
207
.
33.
Spendley
,
W.
,
Hext
,
G. R.
, and
Himsworth
,
F. R.
,
1962
, “
Sequential Application of Simplex Designs in Optimisation and Evolutionary Operation
,”
Technometrics
,
4
(
4
), pp.
441
461
.
34.
Fletcher
,
R.
,
2013
,
Practical Methods of Optimization
,
John Wiley & Sons
,
New York
.
35.
Nelder
,
J. A.
, and
Mead
,
R.
,
1965
, “
A Simplex Method for Function Minimization
,”
Comput. J.
,
7
(
4
), pp.
308
313
.
36.
Luersen
,
M. A.
,
Le Riche
,
R.
, and
Guyon
,
F.
,
2004
, “
A Constrained, Globalized, and Bounded Nelder–Mead Method for Engineering Optimization
,”
Struct. Multidiscip. Optim.
,
27
(
1–2
), pp.
43
54
.
37.
Cozad
,
A.
,
Sahinidis
,
N. V.
, and
Miller
,
D. C.
,
2014
, “
Learning Surrogate Models for Simulation-Based Optimization
,”
AIChE J.
,
60
(
6
), pp.
2211
2227
.
38.
Han
,
L.
, and
Neumann
,
M.
,
2006
, “
Effect of Dimensionality on the Nelder–Mead Simplex Method
,”
Optim. Method. Softw.
,
21
(
1
), pp.
1
16
.
39.
Chen
,
T.
,
Mueller
,
J.
, and
Shea
,
K.
,
2016
, “
Design and Fabrication of a Bistable Unit Actuator With Multi-Material Additive Manufacturing
,”
Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference
,
Austin, TX
,
Aug. 8–10
, pp.
2060
2076
.
40.
Xiong
,
X.
,
Shen
,
S. Z.
,
Hua
,
L.
,
Liu
,
J. Z.
,
Li
,
X.
,
Wan
,
X.
, and
Miao
,
M.
,
2018
, “
Finite Element Models of Natural Fibers and Their Composites: A Review
,”
J. Reinf. Plast. Compos.
,
37
(
9
), pp.
617
635
.
41.
Eberlein
,
R.
,
Holzapfel
,
G. A.
, and
Schulze-bauer
,
C. A. J.
,
2001
, “
An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies
,”
Comput. Method. Biomech. Biomed. Eng.
,
4
(
3
), pp.
209
229
.
42.
Cassidy
,
J. J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
23
(
1
), pp.
75
88
.
43.
Belytschko
,
T.
,
Kulak
,
R. F.
,
Schultz
,
A. B.
, and
Galante
,
J. O.
,
1974
, “
Finite Element Stress Analysis of an Intervertebral Disc
,”
J. Biomech.
,
7
(
3
), pp.
277
285
.
44.
Wright
,
M. H.
,
2010
, “
Nelder, Mead, and the Other Simplex Method
,”
Doc. Math.
,
7
, pp.
271
276
.
45.
Tan
,
S. H.
,
Teo
,
E. C.
, and
Chua
,
H. C.
,
2004
, “
Quantitative Three-Dimensional Anatomy of Cervical, Thoracic and Lumbar Vertebrae of Chinese Singaporeans
,”
Eur. Spine J.
,
13
(
2
), pp.
137
146
.
46.
Kim
,
H. S.
,
Song
,
J. S.
,
Heo
,
W.
,
Cha
,
J. H.
, and
Rhee
,
D. Y.
,
2012
, “
Comparative Study Between a Curved and a Wedge PEEK Cage for Single-Level Anterior Cervical Discectomy and Interbody Fusion
,”
Korean J. Spine
,
9
(
3
), p.
181
.
47.
White
,
A. A.
, and
Panjabi
,
M. M.
,
1978
,
Clinical Biomechanics of the Spine
,
Lippincott
,
New York
.
48.
Moroney
,
S. P.
,
Schultz
,
A. B.
,
Miller
,
J. A.
, and
Andersson
,
G. B.
,
1988
, “
Load-Displacement Properties of Lower Cervical Spine Motion Segments
,”
J. Biomech.
,
21
(
9
), pp.
769
779
.
49.
D’Errico
,
J.
,
2012
, “
fminsearchbnd, fminsearchcon
,” MATLAB Central File Exchange. https://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd-fminsearchcon. Accessed Feb. 2, 2018.
50.
Liu
,
R.
,
Kumar
,
A.
,
Chen
,
Z.
,
Agrawal
,
A.
,
Sundararaghavan
,
V.
, and
Choudhary
,
A.
,
2015
, “
A Predictive Machine Learning Approach for Microstructure Optimization and Materials Design
,”
Sci. Rep.
,
5
, p.
11551
.
You do not currently have access to this content.