Abstract

This paper presents a novel two-layer and two-loop spatial deployable linkage which can only accurately output vertical straight-line motion. First, the degree-of-freedom (DOF) of the linkage is analyzed based on structure decomposition and screw theory, and the characteristic of the straight-line motion of the linkage is verified by checking the output twist of the end platform. Then, the kinematic model of the mechanism is established based on the conditions of the straight-line motion and the single DOF. Finally, several potentially typical applications of the linkage are exhibited. The straight-line linkage has relatively simple joint layouts and kinematics model and can be used as a deployable unit to construct some special deployable mechanisms.

References

References
1.
Escrig
,
F.
, and
Valcarcel
,
J. P.
,
1993
, “
Geometry of Expandable Space Structures
,”
Int. J. Space Struct.
,
8
(
1–2
), pp.
71
84
. 10.1177/0266351193008001-208
2.
Dai
,
J. S.
, and
Rees Jones
,
J.
,
1999
, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds
,”
ASME J. Mech. Des.
,
121
(
3
), pp.
375
382
. 10.1115/1.2829470
3.
Puig
,
L.
,
Barton
,
A.
, and
Rando
,
N.
,
2010
, “
A Review on Large Deployable Structures for Astrophysics Missions
,”
Acta Astronaut.
,
67
(
1–2
), pp.
12
26
. 10.1016/j.actaastro.2010.02.021
4.
Cai
,
J.
,
Zhang
,
Q.
,
Feng
,
J.
, and
Xu
,
Y.
,
2018
, “
Modeling and Kinematic Path Selection of Retractable Kirigami Roof Structures
.
Comput. Aided Civ. Infrastruct. Eng.
34
(
4
), pp.
352
363
. 10.1111/mice.12418
5.
Zhao
,
J.-S.
,
Chu
,
F.
, and
Feng
,
Z.-J.
,
2009
, “
The Mechanism Theory and Application of Deployable Structures Based on SLE
,”
Mech. Mach. Theory
,
44
(
2
), pp.
324
335
. 10.1016/j.mechmachtheory.2008.03.014
6.
Kiper
,
G.
,
Söylemez
,
E.
, and
Kişisel
,
AUÖ
,
2008
, “
A Family of Deployable Polygons and Polyhedra
,”
Mech. Mach. Theory
,
43
(
5
), pp.
627
640
. 10.1016/j.mechmachtheory.2007.04.011
7.
Li
,
R.
,
Yao
,
Y.-a.
, and
Kong
,
X.
,
2016
, “
A Class of Reconfigurable Deployable Platonic Mechanisms
,”
Mech. Mach. Theory
,
105
, pp.
409
427
. 10.1016/j.mechmachtheory.2016.07.019
8.
St-Onge
,
D.
, and
Gosselin
,
C.
,
2016
, “
Synthesis and Design of a One Degree-of-Freedom Planar Deployable Mechanism With a Large Expansion Ratio
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021025
. 10.1115/1.4032101
9.
Zhao
,
D.-J.
,
Zhao
,
J.-S.
, and
Yan
,
Z.-F.
,
2016
, “
Planar Deployable Linkage and Its Application in Overconstrained Lift Mechanism
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021022
. 10.1115/1.4032096
10.
Chen
,
Y.
,
Fan
,
L.
, and
Feng
,
J.
,
2017
, “
Kinematic of Symmetric Deployable Scissor-Hinge Structures With Integral Mechanism Mode
,”
Comput. Struct.
,
191
, pp.
140
152
. 10.1016/j.compstruc.2017.06.006
11.
Li
,
B.
,
Huang
,
H.
, and
Deng
,
Z.
,
2016
, “
Mobility Analysis of Symmetric Deployable Mechanisms Involved in a Coplanar 2-Twist Screw System
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011007
. 10.1115/1.4030373
12.
Chen
,
Y.
, and
You
,
Z.
,
2008
, “
On Mobile Assemblies of Bennett Linkages
,”
Proc. R. Soc. A
,
464
(
2093
), pp.
1275
1293
. 10.1098/rspa.2007.0188
13.
Liu
,
S. Y.
, and
Chen
,
Y.
,
2009
, “
Myard Linkage and Its Mobile Assemblies
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1950
1963
. 10.1016/j.mechmachtheory.2009.05.001
14.
Huang
,
H.
,
Deng
,
Z.
,
Qi
,
X.
, and
Li
,
B.
,
2013
, “
Virtual Chain Approach for Mobility Analysis of Multiloop Deployable Mechanisms
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111002
. 10.1115/1.4025383
15.
Huang
,
H.
,
Li
,
B.
,
Zhu
,
J.
, and
Qi
,
X.
,
2016
, “
A New Family of Bricard-Derived Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
034503
. 10.1115/1.4032119
16.
Cai
,
J.
,
Deng
,
X.
,
Feng
,
J.
, and
Xu
,
Y.
,
2014
, “
Mobility Analysis of Generalized Angulated Scissor-Like Elements With the Reciprocal Screw Theory
,”
Mech. Mach. Theory
,
82
, pp.
256
265
. 10.1016/j.mechmachtheory.2014.07.011
17.
Cai
,
J.
,
Xu
,
Y.
, and
Feng
,
J.
,
2013
, “
Kinematic Analysis of Hoberman's Linkages With the Screw Theory
,”
Mech. Mach. Theory
,
63
, pp.
28
34
. 10.1016/j.mechmachtheory.2013.01.004
18.
Xiu
,
H.
,
Wang
,
K.
,
Xu
,
T.
,
Wei
,
G.
, and
Ren
,
L.
,
2019
, “
Synthesis and Analysis of Fulleroid-Like Deployable Archimedean Mechanisms Based on an Overconstrained Eight-Bar Linkage
,”
Mech. Mach. Theory
,
137
, pp.
476
508
. 10.1016/j.mechmachtheory.2019.03.004
19.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
. 10.1115/1.4027638
20.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
A Spatial Eight-Bar Linkage and Its Association With the Deployable Platonic Mechanisms
,”
ASME J. Mech. Rob.
,
6
(
2
), p.
021010
. 10.1115/1.4025472
21.
Wei
,
G.
,
Ding
,
X.
, and
Dai
,
J. S.
,
2010
, “
Mobility and Geometric Analysis of the Hoberman Switch-Pitch Ball and Its Variant
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031010
. 10.1115/1.4001730
22.
Ding
,
X.
,
Yang
,
Y.
, and
Dai
,
J. S.
,
2013
, “
Design and Kinematic Analysis of a Novel Prism Deployable Mechanism
,”
Mech. Mach. Theory
,
63
, pp.
35
49
. 10.1016/j.mechmachtheory.2013.01.001
23.
Deng
,
Z.
,
Huang
,
H.
,
Li
,
B.
, and
Liu
,
R.
,
2011
, “
Synthesis of Deployable/Foldable Single Loop Mechanisms With Revolute Joints
,”
ASME J. Mech. Rob.
,
3
(
3
), p.
031006
. 10.1115/1.4004029
24.
Song
,
X.
,
Deng
,
Z.
,
Guo
,
H.
,
Liu
,
R.
,
Li
,
L.
, and
Liu
,
R.
,
2017
, “
Networking of Bennett Linkages and Its Application on Deployable Parabolic Cylindrical Antenna
,”
Mech. Mach. Theory
,
109
, pp.
95
125
. 10.1016/j.mechmachtheory.2016.10.019
25.
Lu
,
S.
,
Zlatanov
,
D.
, and
Ding
,
X.
,
2017
, “
Approximation of Cylindrical Surfaces With Deployable Bennett Networks
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021001
. 10.1115/1.4035801
26.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
. 10.1115/1.4035003
27.
Qi
,
X.
,
Huang
,
H.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
A Large Ring Deployable Mechanism for Space Satellite Antenna
,”
Aerosp. Sci. Technol.
,
58
, pp.
498
510
. 10.1016/j.ast.2016.09.014
28.
Paquete
,
L.
,
2007
,
Erik D. Demaine, Joseph O’Rouke, Review of Geometric Folding Algorithms: Linkages, Origami, Polyhedra
,
Cambridge University Press
,
New York
.
29.
Chen
,
Y.
,
Sareh
,
P.
,
Yan
,
J.
,
Fallah
,
A. S.
, and
Feng
,
J.
, “
An Integrated Geometric-Graph-Theoretic Approach to Representing Origami Structures and Their Corresponding Truss Frameworks
,”
ASME J. Mech. Des.
141
(
9
), p.
091402
. 10.1115/1.4042791
30.
Sarrus
,
P. T.
,
1853
, “
Note sur la Transformation des Mouvements Rectilignes Alternatifs en Mouvements Circulaires, et Réciproquement
,”
Acad. Sci.
,
36
, pp.
1036
1038
.
31.
Ding
,
H.
,
Cao
,
W.-A.
,
Chen
,
Z.
, and
Kecskeméthy
,
A.
,
2015
, “
Structural Synthesis of Two-Layer and Two-Loop Spatial Mechanisms With Coupling Chains
,”
Mech. Mach. Theory
,
92
, pp.
289
313
. 10.1016/j.mechmachtheory.2015.05.015
32.
Cao
,
W.-A.
,
Ding
,
H.
,
Chen
,
Z.
, and
Zhao
,
S.
,
2016
, “
Mobility Analysis and Structural Synthesis of a Class of Spatial Mechanisms With Coupling Chains
,”
Robotica
,
34
(
11
), pp.
2467
2485
. 10.1017/S0263574715000132
33.
Cao
,
W.-a.
,
Yang
,
D.
, and
Ding
,
H.
,
2017
, “
A New Family of Deployable Mechanisms Derived From Two-Layer and Two-Loop Spatial Linkages With Five Revolute Pair Coupling Chains
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061016
. 10.1115/1.4038065
34.
Huang
,
Z.
,
Li
,
Q.
, and
Ding
,
H.
,
2013
,
Theory of Parallel Mechanisms
,
Springer
,
Dordrecht, Netherlands
.
You do not currently have access to this content.