Abstract

A large amount of energy from power plants, vehicles, oil refining, and steel or glass making process is released to the atmosphere as waste heat. The thermoelectric generator (TEG) provides a way to reutilize this portion of energy by converting temperature differences into electricity using Seebeck phenomenon. Because the figures of merit zT of the thermoelectric materials are temperature-dependent, it is not feasible to achieve high efficiency of the thermoelectric conversion using only one single thermoelectric material in a wide temperature range. To address this challenge, the authors propose a method based on topology optimization to optimize the layouts of functional graded TEGs consisting of multiple materials. The multimaterial TEG is optimized using the solid isotropic material with penalization (SIMP) method. Instead of dummy materials, both the P-type and N-type electric conductors are optimally distributed with two different practical thermoelectric materials. Specifically, Bi2Te3 and Zn4Sb3 are selected for the P-type element while Bi2Te3 and CoSb3 are employed for the N-type element. Two optimization scenarios with relatively regular domains are first considered with one optimizing on both the P-type and N-type elements simultaneously, and the other one only on single P-type element. The maximum conversion efficiency could reach 9.61% and 12.34% respectively in the temperature range from 25 °C to 400 °C. CAD models are reconstructed based on the optimization results for numerical verification. A good agreement between the performance of the CAD model and optimization result is achieved, which demonstrates the effectiveness of the proposed method.

References

1.
Snyder
,
G. J.
, and
Toberer
,
E. S.
,
2008
, “
Complex Thermoelectric Materials
,”
Nat. Mater.
,
7
(
2
), p.
105
. 10.1038/nmat2090
2.
Zhang
,
X.
, and
Zhao
,
L.-D.
,
2015
, “
Thermoelectric Materials: Energy Conversion Between Heat and Electricity
,”
J. Materiom.
,
1
(
2
), pp.
92
105
. 10.1016/j.jmat.2015.01.001
3.
O’Brien
,
R.
,
Ambrosi
,
R.
,
Bannister
,
N.
,
Howe
,
S.
, and
Atkinson
,
H. V.
,
2008
, “
Safe Radioisotope Thermoelectric Generators and Heat Sources for Space Applications
,”
J. Nucl. Mater.
,
377
(
3
), pp.
506
521
. 10.1016/j.jnucmat.2008.04.009
4.
Kumar
,
S.
,
Heister
,
S. D.
,
Xu
,
X.
,
Salvador
,
J. R.
, and
Meisner
,
G. P.
,
2013
, “
Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis
,”
J. Electron. Mater.
,
42
(
4
), pp.
665
674
. 10.1007/s11664-013-2471-9
5.
Kumar
,
S.
,
Heister
,
S. D.
,
Xu
,
X.
,
Salvador
,
J. R.
, and
Meisner
,
G. P.
,
2013
, “
Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation and Topological Studies
,”
J. Electron. Mater.
,
42
(
6
), pp.
944
955
. 10.1007/s11664-013-2472-8
6.
Champier
,
D.
,
2017
, “
Thermoelectric Generators: A Review of Applications
,”
Energy Convers. Manage.
,
140
, pp.
167
181
. 10.1016/j.enconman.2017.02.070
7.
He
,
W.
,
Zhang
,
G.
,
Zhang
,
X.
,
Ji
,
J.
,
Li
,
G.
, and
Zhao
,
X.
,
2015
, “
Recent Development and Application of Thermoelectric Generator and Cooler
,”
Appl. Energy
,
143
, pp.
1
25
. 10.1016/j.apenergy.2014.12.075
8.
Bell
,
L. E.
,
2008
, “
Cooling, Heating, Generating Power, and Recovering Waste Heat With Thermoelectric Systems
,”
Science
,
321
(
5895
), pp.
1457
1461
. 10.1126/science.1158899
9.
Zhao
,
L.-D.
,
Lo
,
S.-H.
,
Zhang
,
Y.
,
Sun
,
H.
,
Tan
,
G.
,
Uher
,
C.
,
Wolverton
,
C.
,
Dravid
,
V. P.
, and
Kanatzidis
,
M. G.
,
2014
, “
Ultralow Thermal Conductivity and High Thermoelectric Figure of Merit in SnSe Crystals
,”
Nature
,
508
(
7496
), p.
373
. 10.1038/nature13184
10.
Biswas
,
K.
,
He
,
J.
,
Blum
,
I. D.
,
Wu
,
C.-I.
,
Hogan
,
T. P.
,
Seidman
,
D. N.
,
Dravid
,
V. P.
, and
Kanatzidis
,
M. G.
,
2012
, “
High-Performance Bulk Thermoelectrics With All-Scale Hierarchical Architectures
,”
Nature
,
489
(
7416
), p.
414
. 10.1038/nature11439
11.
Hicks
,
L.
, and
Dresselhaus
,
M. S.
,
1993
, “
Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
,
47
(
19
), p.
12727
. 10.1103/PhysRevB.47.12727
12.
Pei
,
Y.
,
Wang
,
H.
, and
Snyder
,
G. J.
,
2012
, “
Band Engineering of Thermoelectric Materials
,”
Adv. Mater.
,
24
(
46
), pp.
6125
6135
. 10.1002/adma.201202919
13.
He
,
J.
,
Kanatzidis
,
M. G.
, and
Dravid
,
V. P.
,
2013
, “
High Performance Bulk Thermoelectrics Via a Panoscopic Approach
,”
Mater. Today
,
16
(
5
), pp.
166
176
. 10.1016/j.mattod.2013.05.004
14.
El-Genk
,
M. S.
, and
Saber
,
H. H.
,
2003
, “
High Efficiency Segmented Thermoelectric Unicouple for Operation Between 973 and 300 K
,”
Energy Convers. Manage.
,
44
(
7
), pp.
1069
1088
. 10.1016/S0196-8904(02)00109-7
15.
Snyder
,
G. J.
,
2004
, “
Application of the Compatibility Factor to the Design of Segmented and Cascaded Thermoelectric Generators
,”
Appl. Phys. Lett.
,
84
(
13
), pp.
2436
2438
. 10.1063/1.1689396
16.
Hadjistassou
,
C.
,
Kyriakides
,
E.
, and
Georgiou
,
J.
,
2013
, “
Designing High Efficiency Segmented Thermoelectric Generators
,”
Energy Convers. Manage.
,
66
, pp.
165
172
. 10.1016/j.enconman.2012.07.030
17.
Snyder
,
G. J.
, and
Ursell
,
T. S.
,
2003
, “
Thermoelectric Efficiency and Compatibility
,”
Phys. Rev. Lett.
,
91
(
14
), p.
148301
. 10.1103/PhysRevLett.91.148301
18.
Takezawa
,
A.
, and
Kitamura
,
M.
,
2012
, “
Geometrical Design of Thermoelectric Generators Based on Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
90
(
11
), pp.
1363
1392
. 10.1002/nme.3375
19.
Soprani
,
S.
,
Haertel
,
J. H. K.
,
Lazarov
,
B. S.
,
Sigmund
,
O.
, and
Engelbrecht
,
K.
,
2016
, “
A Design Approach for Integrating Thermoelectric Devices using Topology Optimization
,”
Appl. Energy
,
176
, pp.
49
64
. 10.1016/j.apenergy.2016.05.024
20.
Mativo
,
J.
, and
Hallinan
,
K.
,
2019
, “
Development of Compliant Thermoelectric Generators (tegs) in Aerospace Applications using Topology Optimization
,”
Energy Harvesting Syst.
,
4
(
2
), pp.
87
105
. 10.1515/ehs-2016-0017
21.
Lundgaard
,
C.
, and
Sigmund
,
O.
,
2018
, “
A Density-Based Topology Optimization Methodology for Thermoelectric Energy Conversion Problems
,”
Struct. Multidiscip. Optim.
,
57
(
4
), pp.
1427
1442
. 10.1007/s00158-018-1919-1
22.
Lundgaard
,
C.
,
Sigmund
,
O.
, and
Bjørk
,
R.
,
2018
, “
Topology Optimization of Segmented Thermoelectric Generators
,”
J. Electronic Mater.
,
47
(
12
), pp.
6959
6971
. 10.1007/s11664-018-6606-x
23.
Lundgaard
,
C.
, and
Sigmund
,
O.
,
2019
, “
Design of Segmented Off-Diagonal Thermoelectric Generators using Topology Optimization
,”
Appl. Energy
,
236
, pp.
950
960
. 10.1016/j.apenergy.2018.12.021
24.
Lundgaard
,
C.
, and
Sigmund
,
O.
,
2019
, “
Design of Segmented Thermoelectric Peltier Coolers by Topology Optimization
,”
Appl. Energy
,
239
, pp.
1003
1013
. 10.1016/j.apenergy.2019.01.247
25.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
. 10.1016/0045-7825(88)90086-2
26.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design As a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
27.
Zhou
,
M.
, and
Rozvany
,
G.
,
1991
, “
The COC Algorithm, Part II: Topological, Geometrical and Generalized Shape Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
89
(
1–3
), pp.
309
336
. 10.1016/0045-7825(91)90046-9
28.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2004
, “
Structural Optimization Using Sensitivity Analysis and a Level-set Method
,”
J. Comput. Phys.
,
194
(
1
), pp.
363
393
. 10.1016/j.jcp.2003.09.032
29.
Wang
,
M. Y.
,
Wang
,
X.
, and
Guo
,
D.
,
2003
, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
192
(
1–2
), pp.
227
246
. 10.1016/S0045-7825(02)00559-5
30.
Norato
,
J.
,
Bell
,
B.
, and
Tortorelli
,
D. A.
,
2015
, “
A Geometry Projection Method for Continuum-Based Topology Optimization with Discrete Elements
,”
Comput. Methods Appl. Mech. Eng.
,
293
, pp.
306
327
. 10.1016/j.cma.2015.05.005
31.
Norato
,
J.
,
Haber
,
R.
,
Tortorelli
,
D.
, and
Bendsøe
,
M. P.
,
2004
, “
A Geometry Projection Method for Shape Optimization
,”
Int. J. Numer. Methods Eng.
,
60
(
14
), pp.
2289
2312
. 10.1002/nme.1044
32.
Zhang
,
S.
,
Norato
,
J. A.
,
Gain
,
A. L.
, and
Lyu
,
N.
,
2016
, “
A Geometry Projection Method for the Topology Optimization of Plate Structures
,”
Struct. Multidiscip. Optim.
,
54
(
5
), pp.
1173
1190
. 10.1007/s00158-016-1466-6
33.
Kazemi
,
H.
,
Vaziri
,
A.
, and
Norato
,
J. A.
,
2018
, “
Topology Optimization of Structures Made of Discrete Geometric Components with Different Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111401
. 10.1115/1.4040624
34.
Guest
,
J. K.
,
2009
, “
Topology Optimization with Multiple Phase Projection
,”
Comp. Methods Appl. Mech. Eng.
,
199
(
1-4
), pp.
123
135
.
35.
Guo
,
X.
,
Zhang
,
W.
, and
Zhong
,
W.
,
2014
, “
Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
,”
ASME J. Appl. Mech.
,
81
(
8
), p.
081009
. 10.1115/1.4027609
36.
Zhang
,
W.
,
Yuan
,
J.
,
Zhang
,
J.
, and
Guo
,
X.
,
2016
, “
A New Topology Optimization Approach Based on Moving Morphable Components (MMC) and the Ersatz Material Model
,”
Struct. Multidiscip. Optim.
,
53
(
6
), pp.
1243
1260
. 10.1007/s00158-015-1372-3
37.
Zhang
,
W.
,
Song
,
J.
,
Zhou
,
J.
,
Du
,
Z.
,
Zhu
,
Y.
,
Sun
,
Z.
, and
Guo
,
X.
,
2018
, “
Topology Optimization with Multiple Materials Via Moving Morphable Component (MMC) Method
,”
Int. J. Numer. Methods Eng.
,
113
(
11
), pp.
1653
1675
. 10.1002/nme.5714
38.
Bourdin
,
B.
, and
Chambolle
,
A.
,
2003
, “
Design-Dependent Loads in Topology Optimization
,”
ESAIM: Control Optim. Calculus Var.
,
9
, pp.
19
48
. 10.1051/cocv:2002070
39.
Xie
,
Y. M.
, and
Steven
,
G. P.
,
1993
, “
A Simple Evolutionary Procedure for Structural Optimization
,”
Comput. Struct.
,
49
(
5
), pp.
885
896
. 10.1016/0045-7949(93)90035-C
40.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of An Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
. 10.1115/1.4030989
41.
Fuchi
,
K.
, and
Diaz
,
A. R.
,
2013
, “
Origami Design by Topology Optimization
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111003
. 10.1115/1.4025384
42.
Fu
,
J.
,
Xia
,
L.
,
Gao
,
L.
,
Xiao
,
M.
, and
Li
,
H.
,
2019
, “
Topology Optimization of Periodic Structures with Substructuring
,”
ASME J. Mech. Des.
,
141
(
7
), p.
071403
. 10.1115/1.4042616
43.
Svanberg
,
K.
,
1987
, “
The Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
,
24
(
2
), pp.
359
373
. 10.1002/nme.1620240207
44.
Landau
,
L. D.
,
Bell
,
J.
,
Kearsley
,
M.
,
Pitaevskii
,
L.
,
Lifshitz
,
E.
, and
Sykes
,
J.
,
2013
,
Electrodynamics of Continuous Media
, Vol.
8
,
Elsevier
, Amsterdam.
45.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science and Business Media, Berlin
.
46.
Zuo
,
W.
, and
Saitou
,
K.
,
2017
, “
Multi-Material Topology Optimization Using Ordered SIMP Interpolation
,”
Struct. Multidiscip. Optim.
,
55
(
2
), pp.
477
491
. 10.1007/s00158-016-1513-3
47.
Kajikawa
,
T.
,
Rowe
,
D.
, and
Rowe
,
D.
,
2006
,
Thermoelectric Handbook: Macro to Nano
,
CRC/Taylor & Francis
,
Boca Raton, FL, USA
.
48.
Zienkiewicz
,
O. C.
,
Taylor
,
R. L.
,
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
1977
,
The Finite Element Method
, Vol.
36
,
McGraw-Hill
,
London
.
49.
Allaire
,
G.
,
2015
, “
A Review of Adjoint Methods for Sensitivity Analysis, Uncertainty Quantification and Optimization in Numerical Codes
,”
Ingénieurs de l’Automobile
,
836
, pp.
33
36
.
50.
Wu
,
Y.
,
Yang
,
J.
,
Chen
,
S.
, and
Zuo
,
L.
,
2018
, “
Thermo-Element Geometry Optimization for High Thermoelectric Efficiency
,”
Energy
,
147
, pp.
672
680
. 10.1016/j.energy.2018.01.104
51.
Bourdin
,
B.
,
2001
, “
Filters in Topology Optimization
,”
Int. J. Numer. Methods Eng.
,
50
(
9
), pp.
2143
2158
. 10.1002/nme.116
52.
Kim
,
F.
,
Kwon
,
B.
,
Eom
,
Y.
,
Lee
,
J. E.
,
Park
,
S.
,
Jo
,
S.
,
Park
,
S. H.
,
Kim
,
B.-S.
,
Im
,
H. J.
,
Lee
,
M. H.
,
Min
,
T. K.
,
Kim
,
K. T.
,
Chae
,
H. G.
,
king
,
W. P.
, and
Son
,
J. S.
,
2018
, “
3D Printing of Shape-Conformable Thermoelectric Materials Using All-Inorganic Bi 2 Te 3-Based Inks
,”
Nat. Energy
,
3
(
4
), pp.
301
309
. 10.1038/s41560-017-0071-2
53.
Ye
,
Q.
,
Guo
,
Y.
,
Chen
,
S.
,
Lei
,
N.
, and
Gu
,
X. D.
,
2019
, “
Topology Optimization of Conformal Structures on Manifolds Using Extended Level Set Methods (X-LSM) and Conformal Geometry Theory
,”
Comput. Methods Appl. Mech. Eng.
,
344
, pp.
164
185
. 10.1016/j.cma.2018.08.045
54.
Jiang
,
L.
,
Guo
,
Y.
,
Chen
,
S.
,
Wei
,
P.
,
Lei
,
N.
, and
Gu
,
X. D.
,
2019
, “
Concurrent Optimization of Structural Topology and Infill Properties With a CBF-Based Level Set Method
,”
Front. Mech. Eng. China
,
14
(
2
), pp.
171
189
. 10.1007/s11465-019-0530-5
You do not currently have access to this content.