Abstract

Prior research suggests that excess (purposeful inclusion of margin beyond what is required for known system uncertainties) can limit change propagation and reduce system modifications. Reducing change costs increases system flexibility, permitting adaptions that satisfy uncertain future requirements. The benefits of excess, however, must be traded against higher costs of the initial system and likely performance decreases. Assessing the benefits and costs of excess requires evaluating what forms, locations, and magnitudes of excess inclusion are optimal. This paper improves the state-of-the-art in two ways. First, prior research has generally assessed excess in system-level properties (aggregating component properties into a single metric). The approach presented in this paper extends excess assessment to the component level so that the effects of excess on change propagation may be explicitly captured. Second, this approach holistically assesses the value of excess by evaluating both its costs and benefits. The approach borrows from Decision-Based Design and Model Based System Engineering (MBSE) in creating a generic modeling method capable of excess valuation. A desktop computer example is used for demonstrating how excess is valued in a system and the potential gains associated with excess inclusion when mining cryptocurrency. A single component optimization of the power supply capacity for the desktop is assessed to be 750 W, which balances the initial cost against the future flexibility. A system-level optimization then demonstrates the identification of critical change propagation pathways and illuminates both where and how excess may be included to inhibit change propagation. This key component was identified as the motherboard-central processing unit (CPU) slot in the tested systems.

References

1.
Schulz
,
A. P.
,
Fricke
,
E.
, and
Igenbergs
,
E.
,
2000
, “
Enabling Changes in Systems Throughout the Entire Life-Cycle—Key to Success ?
Proceedings of the 10th Annual INCOSE Conference
,
Minneapolis, MN
,
July 16–20
, pp.
565
573
.
2.
Barber
,
P.
,
Buxton
,
I.
,
Stephenson
,
H.
, and
Ritchey
,
I.
,
1999
, “
Design for Upgradeability: Extending the Life of Large Made to Order Products at the Design Stage
,”
Proceedings of 6th International Product Development Management Conference
,
Cambridge, UK
,
July 5–6
, pp.
75
85
.
3.
Saleh
,
J. H.
,
Hastings
,
D. E.
, and
Newman
,
D. J.
,
2002
, “
Spacecraft Design Lifetime
,”
J. Spacecr. Rockets
,
39
(
2
), pp.
244
257
.
4.
Brathwaite
,
J.
, and
Saleh
,
J. H.
,
2009
, “
Beyond Cost and Performance, a Value-Centric Framework and Pareto Optimization for Communication
,”
AIAA Space 2009 Conference and Exposition
,
Pasadena, CA
,
Sept. 14–17
.
5.
Saleh
,
J. H.
,
Jordan
,
N. C.
, and
Newman
,
D. J.
,
2007
, “
Shifting the Emphasis: From Cost Models to Satellite Utility or Revenue Models. The Case for a Value-Centric Mindset in Space System Design
,”
Acta Astronaut.
,
61
(
10
), pp.
889
900
. 10.1016/j.actaastro.2007.01.072
6.
Geng
,
F.
,
Dubos
,
G. F.
, and
Saleh
,
J. H.
,
2016
, “
Spacecraft Obsolescence: Modeling, Value Analysis, and Implications for Design and Acquisition
,”
2016 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 5–12
, pp.
1
13
.
7.
Ferguson
,
S.
,
Siddiqi
,
A.
,
Lewis
,
K.
, and
de Weck
,
O. L.
,
2007
, “
Flexible and Reconfigurable Systems: Nomenclature and Review
,”
Volume 6: 33rd Design Automation Conference, Parts A and B
,
Las Vegas, NV
,
Sept. 4–7
, ASME, New York, pp.
249
263
.
8.
Ryan
,
E. T.
,
Jacques
,
D. R.
, and
Colombi
,
J. M.
,
2013
, “
An Ontological Framework for Clarifying Flexibility-Related Terminology via Literature Survey
,”
Syst. Eng.
,
16
(
1
), pp.
99
110
. 10.1002/sys.21222
9.
Ross
,
A. M.
,
Rhodes
,
D. H.
, and
Hastings
,
D. E.
,
2008
, “
Defining Changeability : Reconciling Flexibility, Adaptability, Scalability, Modifiability, and Robustness for Maintaining System Lifecycle Value
,”
Syst. Eng.
,
11
(
3
), pp.
246
262
. 10.1002/sys.20098
10.
Saleh
,
J. H.
,
Mark
,
G.
, and
Jordan
,
N. C.
,
2009
, “
Flexibility: A Multi-disciplinary Literature Review and a Research Agenda for Designing Flexible Engineering Systems
,”
J. Eng. Des.
,
20
(
3
), pp.
307
323
. 10.1080/09544820701870813
11.
Eckert
,
C.
,
Clarkson
,
P. J.
, and
Zanker
,
W.
,
2004
, “
Change and Customisation in Complex Engineering Domains
,”
Res. Eng. Des.
,
15
(
1
), pp.
1
21
. 10.1007/s00163-003-0031-7
12.
Hazelrigg
,
G. A.
,
1998
, “
A Framework for Decision-Based Engineering Design
,”
ASME J. Mech. Des.
,
120
(
4
), pp.
653
658
. 10.1115/1.2829328
13.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
. 10.1016/0048-7333(94)00775-3
14.
Martin
,
M. V.
, and
Ishii
,
K.
,
2002
, “
Design for Variety: Developing Standardized and Modularized Product Platform Architectures
,”
Res. Eng. Des.
,
13
(
3
), pp.
213
235
. 10.1007/s00163-002-0020-2
15.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
. https://doi.org/10.1115/1.1765117
16.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manage.
,
48
(
3
), pp.
292
306
. 10.1109/17.946528
17.
Pasqual
,
M. C.
, and
De Weck
,
O. L.
,
2012
, “
Multilayer Network Model for Analysis and Management of Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
305
328
. 10.1007/s00163-011-0125-6
18.
Morkos
,
B.
,
Shankar
,
P.
, and
Summers
,
J. D.
,
2012
, “
Predicting Requirement Change Propagation, Using Higher Order Design Structure Matrices: An Industry Case Study
,”
J. Eng. Des.
,
23
(
12
), pp.
902
923
. https://doi.org/10.1080/09544828.2012.662273
19.
Koh
,
E. C. Y.
,
Caldwell
,
N. H. M.
, and
Clarkson
,
P. J.
,
2012
, “
A Method to Assess the Effects of Engineering Change Propagation
,”
Res. Eng. Des.
,
23
(
4
), pp.
329
351
. 10.1007/s00163-012-0131-3
20.
Hamraz
,
B.
,
Caldwell
,
N. H. M.
, and
John Clarkson
,
P.
,
2012
, “
A Multidomain Engineering Change Propagation Model to Support Uncertainty Reduction and Risk Management in Design
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100905
. 10.1115/1.4007397
21.
Eckert
,
C.
,
Isaksson
,
O.
, and
Earl
,
C.
,
2019
, “
Design Margins: A Hidden Issue in Industry
,”
Des. Sci.
,
5
, p.
e9
. 10.1017/dsj.2019.7
22.
Allen
,
J. D.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2016
, “
Evaluation of System Evolvability Based on Usable Excess
,”
ASME J. Mech. Des.
,
138
(
9
), p.
091101
. 10.1115/1.4033989
23.
Tackett
,
M. W. P.
,
Mattson
,
C. A.
, and
Ferguson
,
S. M.
,
2014
, “
A Model for Quantifying System Evolvability Based on Excess and Capacity
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051002
. 10.1115/1.4026648
24.
Cansler
,
E. Z.
,
White
,
S. B.
,
Ferguson
,
S. M.
, and
Mattson
,
C. A.
,
2016
, “
Excess Identification and Mapping in Engineered Systems
,”
ASME J. Mech. Des.
,
138
(
8
), p.
081103
. 10.1115/1.4033884
25.
White
,
S.
, and
Ferguson
,
S.
,
2017
, “
Exploring Architecture Selection and System Evolvability
,”
Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Aug. 6–9
, pp.
1
16
.
26.
Nembhard
,
H.
, and
Aktan
,
M.
,
2009
,
Real Options in Engineering Design, Operations, and Management
,
CRC Press
,
Boca Raton, FL
.
27.
Kalligeros
,
K.
,
2009
, “Real Options in Engineering Design,”
Real Options in Engineering Design, Operations, and Management
,
H.
Nembhard
, and
M.
Aktan
, eds.,
CRC Press
,
Boca Raton, FL
, pp.
127
153
.
28.
de Neufville
,
R.
,
Asce
,
L. M.
,
Scholtes
,
S.
, and
Wang
,
T.
,
2005
, “
Real Options by Spreadsheet : Parking Garage Case Example Valuing Real Options by Spreadsheet : Parking Garage Case Example
,”
J. Infrastruct. Syst.
,
12
(
3
), pp.
1
19
.
29.
Tilstra
,
A. H.
,
Seepersad
,
C. C.
, and
Wood
,
K. L.
,
2009
, “
Analysis of Product Flexibility for Future Evolution Based on Design Guidelines and a High-Definition Design Structure Matrix
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE2009)
,
San Diego, CA
,
Aug. 30–Sept. 2
,
ASME
, pp.
951
964
.
30.
Hazelrigg
,
G. A.
,
2012
,
Fundamentals of Decision Making for Engineering Design and Systems Engineering
,
George A. Hazelrigg
.
31.
Ross
,
A. M.
, and
Rhodes
,
D. H.
,
2008
, “
Using Natural Value-Centric Time Scales for Conceptualizing System Timelines Through Epoch-Era Analysis
,”
18th Annual International Symposium of the International Council on Systems Engineering, INCOSE 2008
,
Utrecht, The Netherlands
,
June 15–19
, pp.
2250
2264
.
32.
Yadav
,
D.
,
Long
,
D.
,
Morkos
,
B.
, and
Ferguson
,
S. M.
,
2019
, “
Estimating the Value of Excess: A Case Study of Gaming Computers, Consoles and the Video Game Industry
,”
Proceedings of ASME 2019 IDETC/CIE
,
Anaheim, CA
,
Aug. 18–21
, p.
14
.
33.
PC Gamer,
2010
, “
Hard Stuff Trinity
,”
PC Gamer
, Issue 207, December 2010, FutureUs Inc., South San Francisco, CA.
You do not currently have access to this content.