Abstract

This work analyzes the role of bioinspired product architecture in facilitating the design of robust engineering systems. Prior works have proposed design guidelines to facilitate the implementation of bioinspired product architectures for engineered systems. This work shows that implementing a bioinspired product architecture may improve a system’s robustness to random module failures, but may degrade the system’s effectiveness in the absence of any module failure. To demonstrate such a trade-off between the robustness and the undisrupted effectiveness of a system, this study quantitatively compares biological systems to their functionally equivalent modular systems. The modular equivalents of biological systems are first derived by utilizing Functional Modeling. The application of the bioinspired product architecture guidelines is then modeled as a transition from the modular product architecture of the modular equivalents to the actual product architecture of the biological systems. The effectiveness and the robustness of the systems are analyzed after the application of each guideline by modeling the systems as multi-flow directed networks. Such an analysis is performed by introducing metrics that quantify a system’s expected effectiveness and the degradation in the system’s expected effectiveness with increasing severity of random disruptions. The findings are validated by designing and analyzing a COVID-19 breathalyzer as an engineering case study.

References

1.
ISO
,
2015
,
ISO 18458: 2015: Biomimetics–Terminology, Concepts and Methodology
,
Beuth Verlag Berlin
,
Germany
.
2.
Goel
,
A. K.
,
McAdams
,
D. A.
, and
Stone
,
R. B.
,
2015
,
Biologically Inspired Design
,
Springer
,
London
.
3.
Helms
,
M.
,
Vattam
,
S. S.
, and
Goel
,
A. K.
,
2009
, “
Biologically Inspired Design: Process and Products
,”
Des. Studies
,
30
(
5
), pp.
606
622
.
4.
Jacobs
,
S. R.
,
Nichol
,
E. C.
, and
Helms
,
M. E.
,
2014
, “
“Where Are We Now and Where Are We Going?” The BioM Innovation Database
,”
ASME J. Mech. Des.
,
136
(
11
), p.
111101
.
5.
Bhasin
,
D.
, and
McAdams
,
D.
,
2018
, “
The Characterization of Biological Organization, Abstraction, and Novelty in Biomimetic Design
,”
Designs
,
2
(
4
), p.
54
.
6.
Mak
,
T.
, and
Shu
,
L.
,
2004
, “
Abstraction of Biological Analogies for Design
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
117
120
.
7.
Bhasin
,
D.
, and
McAdams
,
D. A.
,
2019
, “
Current State of the art: Problem-Driven Multi-functional Bio-inspired Designs
,”
Proceedings of the IDETC/CIE
,
Anaheim, CA
,
Aug. 18–21
, p.
97455
.
8.
Nagel
,
J. K. S.
,
Schmidt
,
L.
, and
Born
,
W.
,
2015
, “
Fostering Diverse Analogical Transfer in Bio-inspired Design
,”
Proceedings of the IDETC/CIE
,
Boston, MA
,
Aug. 2–5
,
3
, p.
47922
.
9.
Bhasin
,
D.
,
McAdams
,
D. A.
, and
Layton
,
A.
,
2021
, “
A Product Architecture-Based Tool for Bioinspired Function-Sharing
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081401
.
10.
Bhasin
,
D.
,
Behmer
,
S. T.
, and
McAdams
,
D. A.
,
2020
, “
Fostering Function-Sharing Using Bioinspired Product Architecture
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061401
.
11.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
12.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
,
2001
, “
Modular Product Architecture
,”
Des. Studies
,
22
(
5
), pp.
409
424
.
13.
Pandremenos
,
J.
,
Vasiliadis
,
E.
, and
Chryssolouris
,
G.
,
2012
, “
Design Architectures in Biology
,”
Proc. CIRP
,
3
, pp.
448
452
.
14.
Paparistodimou
,
G.
,
Duffy
,
A.
,
Whitfield
,
R. I.
,
Knight
,
P.
, and
Robb
,
M.
,
2020
, “
A Network Science-Based Assessment Methodology for Robust Modular System Architectures During Early Conceptual Design
,”
J. Eng. Des.
,
31
(
4
), pp.
179
218
.
15.
Walsh
,
H. S.
,
Dong
,
A.
, and
Tumer
,
I. Y.
,
2019
, “
An Analysis of Modularity as a Design Rule Using Network Theory
,”
ASME J. Mech. Des.
,
141
(
3
), p.
031102
.
16.
Moritz Göhler
,
S.
,
Eifler
,
T.
, and
Howard
,
T. J.
,
2016
, “
Robustness Metrics: Consolidating the Multiple Approaches to Quantify Robustness
,”
ASME J. Mech. Des.
,
138
(
11
), p.
111407
.
17.
Kitano
,
H.
,
2004
, “
Biological Robustness
,”
Nat. Rev. Genet.
,
5
(
11
), pp.
826
837
.
18.
Ulrich
,
K.
,
1994
,
Fundamentals of Product Modularity
,
Management of Design, Springer
,
Dordrecht
,
219
231
.
19.
Raz
,
A. K.
, and
DeLaurentis
,
D. A.
,
2017
, “
System-of-Systems Architecture Metrics for Information Fusion: A Network Theoretic Formulation
,”
AIAA Information Systems-AIAA Infotech @ Aerospace
,
Grapevine, TX
,
Jan. 9–13
,
p. 1292
.
20.
Department of Defense
,
2011
, FACT SHEET: Resilience of Space System Capabilities, https://www.defense.gov.
21.
Suh
,
N. P.
,
1998
, “
Axiomatic Design Theory for Systems
,”
Res. Eng. Des.
,
10
(
4
), pp.
189
209
.
22.
Paparistodimou
,
G.
,
Duffy
,
A.
,
Whitfield
,
R. I.
,
Knight
,
P.
, and
Robb
,
M.
,
2020
, “
A Network Tool to Analyse and Improve Robustness of System Architectures
,”
Des. Sci.
,
6
, p.
E8
.
23.
Kurtoglu
,
T.
, and
Tumer
,
I. Y.
,
2008
, “
A Graph-Based Fault Identification and Propagation Framework for Functional Design of Complex Systems
,”
ASME J. Mech. Des.
,
130
(
5
), p.
051401
.
24.
Kurtoglu
,
T.
,
Tumer
,
I. Y.
, and
Jensen
,
D. C.
,
2010
, “
A Functional Failure Reasoning Methodology for Evaluation of Conceptual System Architectures
,”
Res. Eng. Des.
,
21
(
4
), pp.
209
234
.
25.
Osman
,
K.
,
Stamenković
,
D.
, and
Lazarević
,
M.
,
2011
, “
Robust Product Architecture Development Combining Matrix-Based Approaches and Function-Based Failure Propagation Method: M-FBFP Framework
,”
FME Trans.
,
39
(
4
), pp.
145
156
.
26.
Short
,
A.-R.
,
Lai
,
A. D.
, and
Van Bossuyt
,
D. L.
,
2018
, “
Conceptual Design of Sacrificial Sub-systems: Failure Flow Decision Functions
,”
Res. Eng. Des.
,
29
(
1
), pp.
23
38
.
27.
Fayemi
,
P. E.
,
Maranzana
,
N.
,
Aoussat
,
A.
, and
Bersano
,
G.
,
2014
, “
Bio-inspired Design Characterisation and Its Links With Problem Solving Tools
,”
Proceedings of the DESIGN 2014 13th International Design Conference
,
Croatia
,
May 19–22
, pp.
173
182
.
28.
Fayemi
,
P. E.
,
Wanieck
,
K.
,
Zollfrank
,
C.
,
Maranzana
,
N.
, and
Aoussat
,
A.
,
2017
, “
Biomimetics: Process, Tools and Practice
,”
Bioinspiration Biomimetics
,
12
(
1
), p.
011002
.
29.
Davis
,
M. L. T.
,
McAdams
,
D. A.
, and
Wadia
,
A. P.
,
2011
, “
Better Resource Usage Through Biomimetic Symbiotic Principles for Host and Derivative Product Synthesis
,”
Proceedings of the AAAI SS Series
,
Palo Alto, CA
,
Mar. 21–23, 2011
, pp.
26
33
.
30.
Dong
,
A.
,
2017
, “
Functional Lock-In and the Problem of Design Transformation
,”
Res. Eng. Des.
,
28
(
2
), pp.
203
221
.
31.
Wadia
,
A. P.
, and
McAdams
,
D. A.
,
2010
, “
Developing Biomimetic Guidelines for the Highly Optimized and Robust Design of Complex Products or Their Components
,”
Proceedings of the IDETC/CIE
,
Montreal, Quebec, Canada
,
Aug. 15–19
,
ASME
, pp.
307
321
.
32.
Chatterjee
,
A.
, and
Layton
,
A.
,
2020
, “
Mimicking Nature for Resilient Resource and Infrastructure Network Design
,”
Reliab. Eng. Syst. Saf.
,
204
, p.
107142
.
33.
Svendsen
,
N.
, and
Lenau
,
T. A.
,
2019
, “
How Does Biologically Inspired Design Cope With Multi-functionality?
,”
Proceedings of the 22nd International Conference on Engineering Design, 2019
,
Delft, The Netherlands
,
Aug. 5–8
,
Cambridge University Press
,
1
(
1
), pp.
349
358
.
34.
Pahl
,
G.
, and
Beitz
,
W.
,
2013
,
Engineering Design: A Systematic Approach
,
Springer
,
London
.
35.
Bhasin
,
D.
,
Staack
,
D.
, and
McAdams
,
D. A.
,
2021
, “
Designing Robust Systems Using Bioinspired Product Architecture
,”
Proceedings of the IDETC/CIE, Virtual Conference
,
Aug. 17–20
,
ASME
, p.
68956
.
36.
Ge
,
C.
,
Li
,
M.
,
Li
,
M.
, and
Peyghan
,
A. A.
,
2020
, “
Au-decorated BN Nanotube as a Breathalyzer for Potential Medical Applications
,”
J. Mol. Liq.
,
312
, p.
113454
.
37.
Shan
,
B.
,
Broza
,
Y. Y.
,
Li
,
W.
,
Wang
,
Y.
,
Wu
,
S.
,
Liu
,
Z.
,
Wang
,
J.
,
Gui
,
S.
,
Wang
,
L.
, and
Zhang
,
Z.
,
2020
, “
Multiplexed Nanomaterial-Based Sensor Array for Detection of COVID-19 in Exhaled Breath
,”
ACS Nano
,
14
(
9
), pp.
12125
12132
.
You do not currently have access to this content.